

PROVINCIA DI PIACENZA COMUNE DI ALSENO

LAVORI DI MESSA IN SICUREZZA DI PEDONI E CICLISTI LUNGO LE STRADE PROVINCIALI S.P. N°54 DI CHIARAVALLE E S.P. N°31 SALSEDIANA MEDIANTE LA REALIZZAZIONE DI PERCORSI PEDOCICLABILI NEI CENTRI ABITATI DELLE FRAZIONI DI CASTELNUOVO FOGLIANI E CHIARAVALLE DELLA COLOMBA.

FINANZIATO IN PARTE DALL'UNIONE EUROPEA "NEXT GENERATION EU.

M2: RIVOLUZIONE VERDE E TRANSIZIONE ECOLOGICA.

C4: TUTELA DEL TERRITORIO E DELLA RISORSA IDRICA,

12.2.: INTERVENTI PER LA RESILIENZA, LA VALORIZZAZIONE DEL TERRITORIO E L'EFFICIENZA ENERGETICA" CUP E91B18000160006

PROGETTO ESECUTIVO

G.T. ENGINEERING S.r.l.

Via A.Ponchiellli, 2 - 43011 Busseto (PR) TEL. +39 0524 930103 E-Mail: gte@gteng.it - PEC: gte@pec.gteng.it www.gteng.it

LAVORO

TAVOLA

PISTA CICLOPEDONALE A CASTELNUOVO FOGLIANI

Finanziato dall'Unione europea NextGenerationEU

SCALA

IL PROGETTISTA

LUCA TESTA

TAVOLA N.

PONTE CICLOPEDONALE RELAZIONE DI CALCOLO

COMMESSA N. FILE LAYOUT SISTEMA QUALITA' AZIENDALE CERTIFICATO UNI EN ISO 9001 **DNV GL Business Assura** 2113ALS Certificato nº CERT-02421-97-AQ-BOL-SINCERT REV. DATA DESCRIZIONE CONTROLLATO REDATTO gennaio 2023 REVISIONE **TESTA GTE** ottobre 2021 EMISSIONE **TESTA GTE**

N. ELABORATTO

B.15

REV.

FOGLIO

1

2 di 68

SOMMARIO

1	PREMESSA	
2	RIFERIMENTI NORMATIVI	
3	SOFTWARE E STRUMENTI DI CALCOLO	
4	MATERIALI IMPIEGATI	
4.1	IMPALCATO - ACCIAIO PER CARPENTERIA METALLICA	
4.2	SPALLA – CEMENTO ARMATO	8
4.2.1	Calcestruzzo	8
4.2.2	Acciaio per armature lente da cemento armato ordinario:	
5	CARATTERISTICHE GEOTECNICHE DEL SITO	9
6	CARATTERIZZAZIONE SISMICA	10
7	COMBINAZIONE DELLE AZIONI	
7.1	Combinazioni agli stati limite ultimi (SLU)	
7.1	Combinazioni agli stati limite esercizio (SLE)	
8 8.1	IMPALCATO	
8.1.1	Permanenti G ₁ : peso proprio elementi strutturali	
8.1.2	Permanenti portati G _{2,1} : Peso proprio grigliato	
8.1.3	Permanenti portati G _{2,2} : Peso parapetto	
8.1.4	Carichi variabili Q ₁ : carichi variabili da traffico	
8.1.5	Carichi variabili Q ₈ : spinta su parapetto	
8.1.6	Carichi variabili Q _{5,4} : carico da neve	
8.1.7	Carichi variabili Q _{5,4} : carico da vento	
8.1.8	Variazioni termiche	
8.1.9	Forza sismica	
8.1	Combinazioni di carico	
8.1	Reazioni sulle spalle	
8.2	VERIFICHE PROFILI	
8.2.1	Verifica trave principale	
8.2.1	Verifica traversi	27
8.3	VERIFICHE DEFORMATA E COMFORT	28
8.3.1	Verifica freccia SLE	28
8.3.1	Analisi della frequenza	28
8.1	VERIFICHE GIUNTI	29
8.1.1	Giunto di continuità travi principali	29
8.1.1	Giunto traversi HEA180	34
9	SPALLA	36
9.1	ANALISI DEI CARICHI DA IMPALCATO	36

9.4.1

N.	EL	.AE	OF	٦А	Т	ГС

B.15

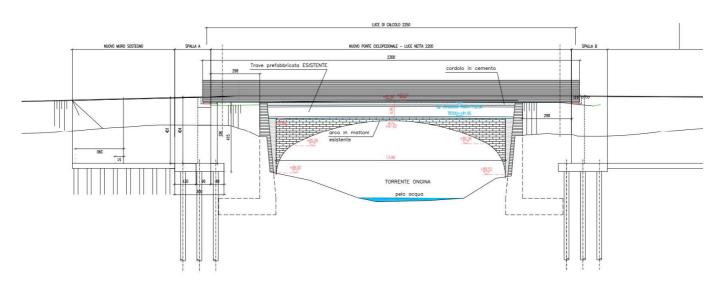
1

3 di 68

FOGLIO

9.1.1	Convenzioni e sistema di riferimento	36
9.1.2	Azioni da impalcato	36
9.1.3	Azioni da impalcato nei sisitemi di riferimentoi spalla	38
9.2	ANALISI DEI CARICHI SPALLA	40
9.2.1	Sistema di riferimento	40
9.2.2	Carichi permanenti	40
9.2.3	Spinte globali M1	46
9.2.4	Riepilogo azioni	52
9.3	COMBINAZIONE DEI CAIRCHI E DETERMINAZIONE SOLLECITAZIONI	53
9.3.1	Elevazione	54
9.3.2	Fondazione	55
9.4	VERIFICA ELEMENTI STRUTTURALI	55
9.4.1	Pali di fondazione	55
9.4.2	Fondazione	60

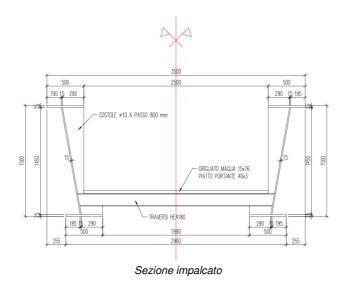
Elevazione66


	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	4 di 68

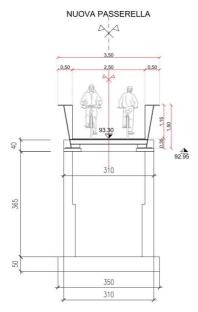
1 PREMESSA

La presente relazione ha come oggetto i calcoli strutturali relativi alla passerella ciclo-pedonale sull'Ongina, opera inserita nella progettazione di interventi di MESSA IN SICUREZZA DI PEDONI E CICLISTI LUNGO LA S.P. N.54 DI CHIARAVALLE E LA S.P. N.31 SALSEDIANA, MEDIANTE LA REALIZZAZIONE DI PERCORSI PEDOCICLABILI NEI CENTRI ABITATI DELLE FRAZIONI DI CASTELNUOVO FOGLIANI E CHIARAVALLE DELLA COLOMBA, nel Comune di Alseno (PC).

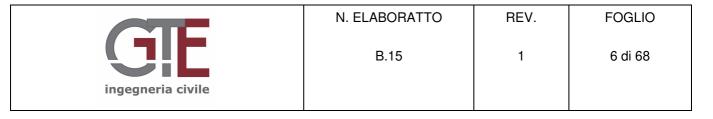
In tali frazioni le strade provinciali sopra citate attraversano i centri abitati e in ambito urbano questi tratti stradali non sono dotati di elementi marginali o dispositivi di protezione adeguati a garantire la necessaria sicurezza al transito delle utenze deboli, come definite dal Codice della Strada (art.3 c.53 bis del D.Lgs n. 285 del 1992), ovvero pedoni, disabili in carrozzella, ciclisti e tutti coloro i quali meritino una tutela particolare dai pericoli derivanti dalla circolazione sulla strada.

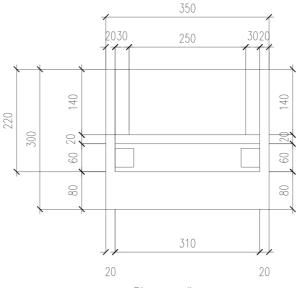

La passerella oggetto di trattazione è costituita da un impalcato in acciaio con luce di calcolo di 22.50m che poggia su due spalle tradizionali realizzate in cemento armato. Lo schema statico adottatto è quello di una trave in semplice appoggio.

Sezione longitudinale passerella

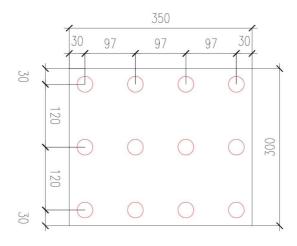

L'impalcato in acciaio a via di corsa inferiore è costituito da due travi di altezza 1.50 m, collegate da traversi HEA 180 posizionati ad interasse di 1.60m. La soletta è realizzata mediante un grigliato maglia 15x75. La larghezza totale dell'impalcato è pari 3.50m.

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	5 di 68




Le spalle presentano una altezza totale massima di 4.04 e sono costituite da un paramento frontale di spessore 80 cm e da un muro paraghiaia di spessore 20cm. Completano la geometria i due muri di risvolto laterali di altezza variabile da 4.04 e 4.00m che presentano uno spessore a spiccato elevazione pari a 40 cm, che si rastrema a 30 cm in sommità.

Le fondazioni sono di tipo profondo, costituite da 12 micropali di diametro 30cm e lunghezza totale 18m, collegati alla spalla mediante suola di fondazione di spessore 50cm.



Vista frontale Spalla

Pianta spalla

Pianta fondazioni

2 RIFERIMENTI NORMATIVI

Per le verifiche e le valutazioni condotte nella presente relazione si è ricorso alla seguente normativa di riferimento:

- D.M. 17.01.2018: Norme Tecniche per le Costruzioni;
- Circolare 21 febbraio 2019, n. 7/C.S.LL.PP: Istruzioni per l'applicazione dell'aggiornamento delle "Norme Tecniche per le costruzioni" di cui a. D.M. 17 Gennaio 2018;
- CNR DT207_2008: Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni;
- UNI EN1992-1-1 Eurocodice 2 "Progettazione delle strutture in calcestruzzo. Parte 1.1: Regole generali e regole per gli edifici";
- UNI EN1993-1-1:2005 Progettazione delle strutture in acciaio. Parte 1.1: Regole generali e regole per gli edifici;
- UNI EN1997-1 Eurocodice 7: Geotechnical design Part 1: General rules;

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	7 di 68

3 SOFTWARE E STRUMENTI DI CALCOLO

I calcoli sono svolti nel rispetto delle leggi della Scienza delle Costruzioni.

Le sollecitazioni massime sono ottenute mediante l'analisi elastica lineare della struttura, la verifica della sicurezza è condotta con il metodo degli stati limite.

Le calcolazioni sono state eseguite con l'ausilio deii seguenti software e strumenti di calcolo:

Excel
 Fogli di calcolo autoprodotti

Straus7 Release 2.4.6
 Software ad elementi finiti per modellazione strutturale

tridimensionale

L'affidabilità dei codici utilizzati e l'attendibilità dei risultati ottenuti sono state controllate confrontando i risultati con calcoli ausiliari (DM 17/01/2019, par.10.2).

4 MATERIALI IMPIEGATI

4.1 IMPALCATO - ACCIAIO PER CARPENTERIA METALLICA

Per la carpenteria si utilizza:

- Per piatti e profili acciaio S355

Con le seguenti caratteristiche (Tabella 4.2.I, D.M. 17.01.2018):

Spessore nominale dell'elemento t ≤ 40		
f _{yk} [MPa]	f _{tk} [MPa]	
355	510	

Spessore nominale dell'elemento 40 < t ≤ 80		
f _{yk} [MPa]	f _{tk} [MPa]	
335	470	

Spessore nominale dell'elemento t ≤ 40		
fyk [MPa]	f _{tk} [MPa]	
275	430	

Per la verifica in campo elastico, la resistenza di calcolo dell'acciaio si è assunta pari a :

$$f_{yd} = \frac{f_{yk}}{\gamma_M}$$

essendo

γM = coefficiente parziale di sicurezza per la resistenza delle membrature e la stabilità

Per il materiale	Elemento o tipo di verifica	γм
------------------	-----------------------------	----

	Sezioni di classe 1-2-3-4	γмо = 1.05
	Fenomeni di instabilità	γм1 = 1.05
	Resistenza delle sezioni tese (indebolite dai fori)	γ _{M2} = 1.25
Dar i collegementi	Bulloni	γ _{M2} = 1.25
Per i collegamenti	Saldature	γ _{M2} = 1.25

Si sono utilizzati i seguenti valori nominali delle proprietà del materiale:

- modulo di elasticità $E = 210000 \text{ N/mm}^2$

- modulo di elasticità tangenziale $G = E / (2 \times (1+v)) = 80769 \text{ N/mm}^2$

- coefficiente di Poisson v = 0.3

- coefficiente di espansione termica α = 12 ×10 $^{\text{-}6}$ per $^{\text{o}}\text{C}$

- densità $\rho = 7850 \text{ kg/m}^3$

4.2 SPALLA – CEMENTO ARMATO

4.2.1 Calcestruzzo

classe di resistenza	R _{ck} [MPa]	f _{ck} [MPa]	f _{cd} [MPa]	E _{cm} [MPa]	Elemento
C28/35	35	28	15,87	32308	Spalla

resistenza a compressione cubica Rck

resistenza a compressione cilindrica $f_{ck} = 0.83 \cdot R_{ck}$ resistenza a compressione cilindrica media $f_{cm} = f_{ck} + 8 \text{ MPa}$

modulo elastico istantaneo del calcestruzzo $E_{cm} = 22000 \cdot [f_{cm} / 10]0,3$

coefficiente riduttivo per le resistenze di lunga durata $\alpha_{cc} = 0.85$ (SLU)

coefficiente parziale di sicurezza del calcestruzzo $\gamma_c = 1,5$

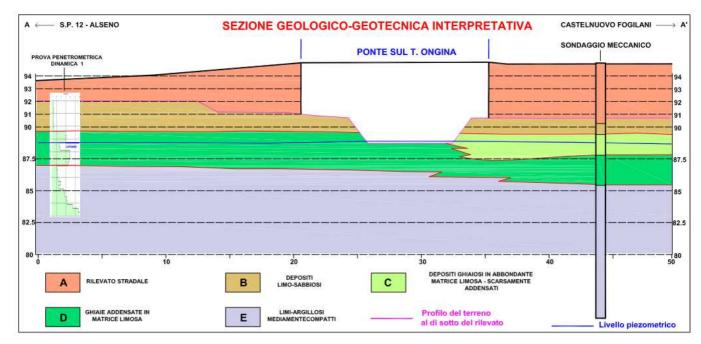
resistenza di calcolo a compressione $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$

Per quanto riguarda le procedure e le prove sperimentali di accettazione del calcestruzzo e delle sue componenti si rimanda nel dettaglio al § 11.2 delle NTC.

4.2.2 Acciaio per armature lente da cemento armato ordinario:

	f _{y nom} [MPa]	f _{t nom} [MPa]	f _{yd} [MPa]	Elemento
B450C	450	540	391,30	Armature in genere

coefficiente parziale di sicurezza per armature lente $\gamma_s = 1,15$ tensione caratteristica di snervamento dell'acciaio $f_{yk} = f_{y \text{ nom}}$ resistenza di calcolo a trazione $f_{yd} = f_{yk} / \gamma_s$


Per quanto riguarda le procedure e le prove sperimentali di accettazione dell'acciaio per cemento armato si rimanda nel dettaglio ai §§ 11.3.1 e 11.3.2 delle NTC.

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	9 di 68

5 CARATTERISTICHE GEOTECNICHE DEL SITO

Per le caratteristiche dei terreni interessati dalle opere si fa riferimento a quanto riportato nella relazione: "Studio geologico-tecnico-sismico con relative indagini geofisiche e penetrometriche" di Febbraio 2021 a firma del Dr. Alberto Lepori.

Da tale relazione è stata estrapolata la caratterizzazione geotecnica sotto riportata

Sezione Geologico Geotecnica – Estratto figura 4 Relazione geotecnica

Unità "A"	Rilevato stradale
Unità "B"	Limo sabbioso mediamente addensato
Unità "C"	Depositi prevalentemente ghiaiosi in abbondante matrice limosa a medio-basso addensamento
Unità "D"	Depositi prevalentemente ghiaiosi in matrice limosa a medio- alto addensamento
Unità "E"	Depositi prevalentemente limo-argillosi mediamente compatti

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	10 di 68

6 CARATTERIZZAZIONE SISMICA

Come richiesto dalla Normativa vigente, la zona dove ricade l'opera in esame è stata considerata sismica con grado di sismicità calcolato sulla base di una caratterizzazione sismica riferita al sito interessato dagli interventi. In fase progettuale si sono adottati i seguenti parametri:

Sito in esame

Regione Emilia romagna

Provincia Piacenza Comune Alseno

Classe: II => Coefficiente cu: 1

Vita nominale: 50
Categoria sottosuolo: C
Categoria topografica: T1

Tempo di ritorno 975 anni

Stato Limite di Salvaguardia della Vita (SLV):

Ne derivano i seguenti valori dei parametri sismici per lo stato limite SLV:

ag = 0.135 accel. orizz. max attesa al sito

 $F_0 = 2.440$ valore massimo del fattore di amplificazione dello spettro in accelerazione

orizzontale

Tc *= 0.279 periodo di inizio del tratto a velocità costante dello spettro in accelerazione

orizzontale

 $S_S = 1.50$ coefficiente di amplificazione stratigrafica

C_C = 1.60 coefficiente dipendente dalla categoria del suolo

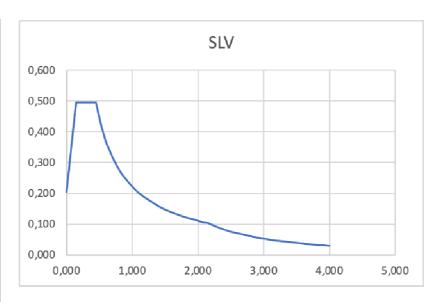
 $S_T = 1.00$ coefficiente di amplificazione topografica

 $S = S_S x S_T = 1.5$

Punti dello spettro di risposta SLV

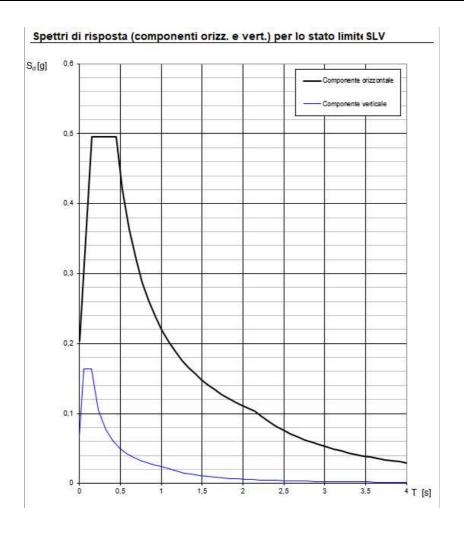
T (S)	S (g)
0,000	0,203
0,149	0,496
0,447	0,496
0,527	0,420
0,608	0,364
0,689	0,321
0,769	0,288
0,850	0,260
0,931	0,238
1,012	0,219
1,092	0,203
1,173	0,189
1,254	0,177
1,335	0,166
1,415	0,156

N.	EL	.AB	OF	٩A٦	TT()


B.15

REV.

1


FOGLIO

11 di 68

N. ELABORATTO	REV.	FOGLIO
B.15	1	12 di 68

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	13 di 68

7 COMBINAZIONE DELLE AZIONI

7.1 Combinazioni agli stati limite ultimi (SLU)

Per il dimensionamento degli elementi strutturali, è stata considerata la seguente combinazione delle azioni agli stati limite ultimi:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^{n} \left(\psi_{0i} \cdot \gamma_{Qi} \cdot Q_{ki} \right)$$

dove:

G₁ è il peso proprio di tutti gli elementi strutturali;

G₂ è peso proprio di tutti gli elementi non strutturali;

Q_{k,1} è il valore caratteristico di una delle azioni variabili;

Q_{k,i} sono i valori caratteristici delle altre azioni variabili;

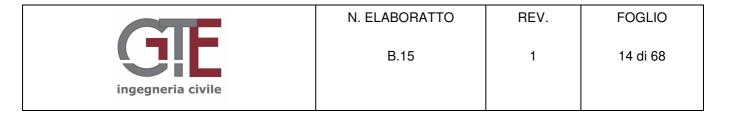
 γ_{G1} è il coefficiente parziale di sicurezza per il peso proprio della struttura;

 γ_{G2} è il coefficiente parziale di sicurezza per il peso proprio degli elementi non strutturali

γ_{Qi} è il coefficiente parziale delle azioni variabili;

 ψ_{0i} sono i coefficienti di combinazione;

l valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qi} sono presi dalla NTC 2018 §2.6.1 e dalla EN 1991-3 § A.2.2


		Coefficiente γ _F	A1 STR
Carichi permanenti G ₁	- favorevoli - sfavorevoli	γ _{G1}	1.00 1.30
Carichi permanenti non strutturali G ₂	- favorevoli - sfavorevoli	γ _{G2}	0.80 1.50
Carichi permanenti non strutturali G ₂ Compiutamente definiti	- favorevoli	γG2	1.00 1.30
Altri carichi variabili	- favorevoli - sfavorevoli	γαί	0.00 1.50

Combinazione Sismica per gli stati limite ultimi (SLU)

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

7.1 Combinazioni agli stati limite esercizio (SLE)

Combinazione Rara

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

Combinazione Frequente

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

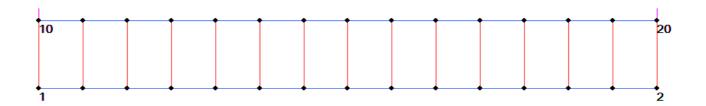
Combinazione Quasi permanente

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

I fattori di tali combinazioni lineari sono riportati nelle seguenti tabelle.

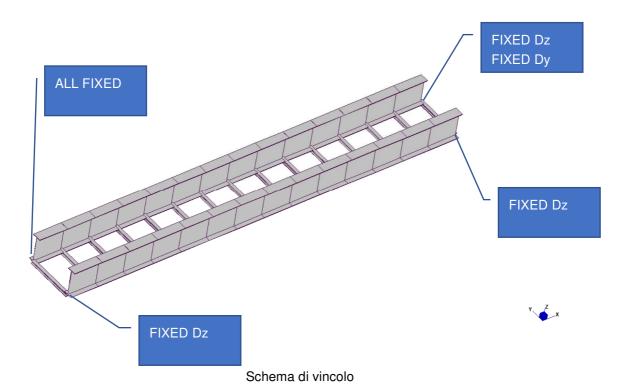
Categoria/Azione variabile	ψ 0j	ψ 1j	ψ 2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

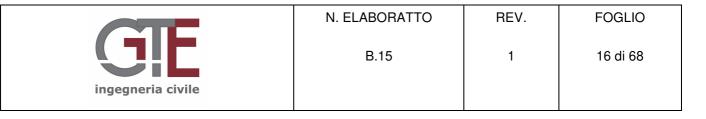
	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	15 di 68


8 IMPALCATO

Si riportano nel seguito l'analisi e le verifiche effettuate sulle strutture di impalcato.

Ai fini della determinazione delle sollecitazioni e degli spostamenti sulla struttura è stato realizzato un modello di calcolo agli elementi finiti utilizzando il codice di calcolo Straus7, release 2.4.6.


Si modella la struttura tenendo conto dei mutui vincoli interni ed esterni e assegnando ai profili le geometrie e le rigidezze corrette.

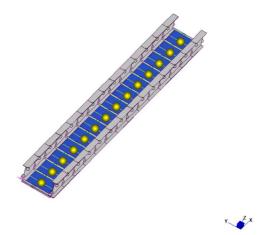

Per le caratteristiche relative agli elementi strutturali e ai vincoli si riportano di seguito delle immagini tratte dal modello e la sua descrizione.

Numerazione nodi e sistema di riferimento

8.1 Analisi dei carichi

8.1.1 Permanenti G₁: peso proprio elementi strutturali

Il peso proprio della struttura viene calcolato in automatico dal software di calcolo agli elementi finiti considerando un peso specifico dell'acciaio pari a 78.5 kN/m³.

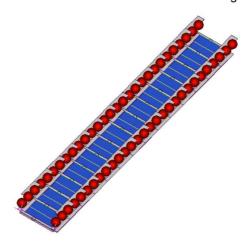

A tale peso ci è aggiunto un coefficiente moltiplicativo pari a 1.12 per tenere conto della quota parte di peso di costole, bullonerie, piatti, etc.

8.1.2 Permanenti portati G_{2,1}: Peso proprio grigliato

Si è considerato il peso di un grigliato antitacco 15x76 maglia portante di spessore 40x3.

Si considera il carico pari a G $_{2,1} = 80 \text{ kg/m}^2$.

Questo carico viene applicato come massa distribuita lungo la passerella



8.1.3 Permanenti portati G_{2,2}: Peso parapetto

Si è considerato un carter di chiusura sul lato della trave in corrispondenza con il transito dei pedon e dei cicli di spessore 5mm.

Si considera il carico pari a G $_{2,2}$ = 1.15 m x 0.005.m x78.5 kN/m³= 45 kg/m .

Tale carico viene considerato come massa distribuita lineare lungo la trave.

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	17 di 68

8.1.4 Carichi variabili Q₁: carichi variabili da traffico

Si considera un carico distribuito secondo lo schema da normativa 5, rappresentante folla compatta pari a 5 kN/m²

Questo carico viene applicato come massa distribuita lungo la passerella

Y

8.1.5 Carichi variabili Q₈: spinta su parapetto

Si considera come da normativa, una forza orizzontale distribuita sul parapetto rappresentante la spinta della folla pari a 1.5 kN/m. Essa sarà posizionata ad un'altezza pari a 1.15 m dal piano viabile.

Nel modello tale forza sarà rappresentata come una forza concentrata posta ad interasse di 1.6m (interasse traversi) pari a:

 $F_H = 1.5 \text{ kN/m} \times 1.60 \text{.m} = 2.4 \text{ kN}$.

8.1.6 Carichi variabili Q_{5,4}: carico da neve

Zona I - Alpina

Altitudine sul livello del mare del sito:

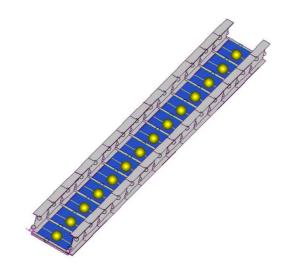
 $a_s \le 200 \text{ m}$

Valore di riferimento del carico di neve al suolo:

 $q_{sk} = 1.50 \text{ kN/m}^2$

GIE
ingegneria civile

B.15


REV.

FOGLIO

1

18 di 68

Questo carico viene applicato come massa distribuita lungo la passerella

8.1.7 Carichi variabili Q_{5,4}: carico da vento

Zona: 2

$$vb,0 = 25$$
 m/s

$$a_0 = 750 \text{ m}$$

$$k_a = 0,015$$

Altitudine sul livello del mare del sito dove è realizzata la costruzione:

$$a_s = 80 m$$

Velocità di riferimento:

$$vb = 25 m/s (90 km/h)$$

Periodo di ritorno

$$T_R = 50$$
 anni

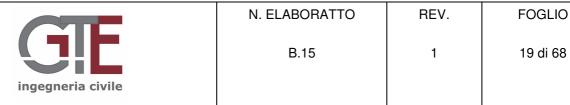
$$\alpha_{R} = 1,000$$

Velocità di riferimento associata al periodo di ritorno:

$$vb(TR) = 25,00 \text{ m/s}$$

Pressione cinetica di riferimento:

$$q_b = 390,6 \text{ N/m}^2$$


Classe di rugosità: C

Categoria di esposizione:

 $k_r = 0,20 \quad m$

 $z_0 = 0,10$ m

 $z_{min} = 5$

Coefficiente di topografia

1,0 $C_t =$

Altezza della costruzione sul suolo:

z = 6 m > z,min 25,02

Coefficiente di esposizione:

1,817 Ce =

Coefficiente di forma:

1,00 Cp =

Coefficiente dinamico:

Cd = 1,00

Pressione del vento:

 $p = q_b * C_e * C_p * C_d$

p =710 N/m^2

Q_{5.2} - Vento a ponte carico

23,00 m lunghezza di riferimento dell'impalcato $L_{rif} =$

 $q_p =$ 710,0 N/m² pressione cinetica di picco (a meno di c_p)

3,000 m larghezza di riferimento impalcato d =

 $h_{tot} =$ 1,500 m altezza totale impalcato

2,00 # $d/h_{tot} =$ rapporto geometrico

coefficiente di forza X $C_{fX} =$ 0,83 #

coefficiente di forza Y 0,90 # $C_{fY} =$

coefficiente di momento Z $C_{mZ} =$ 0,2 #

vento dovuto alla forza X

carico unitario del vento (a metro lineare di lunghezza $q_{c.2.X} = 1757,3 \text{ N/m}$

d'impalcato)

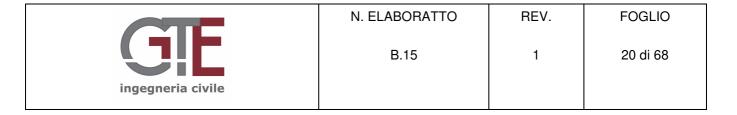
carico totale del vento $q_{c.3.X} =$ 40,4 kN 0,750 m eccentricità carico vento ecc =

momento totale del vento $m_{c.2.X} = 1317,9 \text{ Nm/m}$

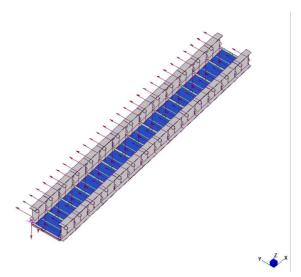
vento dovuto alla forza Y

carico unitario del vento (a metro lineare di lunghezza $q_{c.2.Y} = 1917,0 \text{ N/m}$

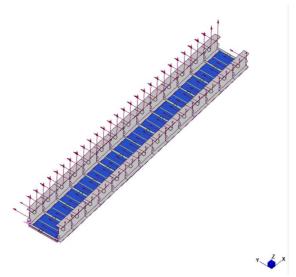
d'impalcato)


carico totale del vento $q_{c.3.Y} =$ 44,1 kN

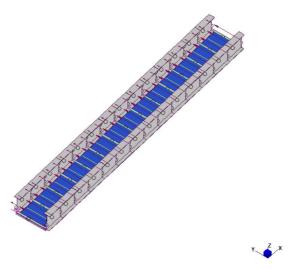
vento dovuto al momento Ζ


momento unitario del vento (a metro lineare di

 $m_{c.2.Z} = 1278,0 \text{ Nm/m}$ lunghezza d'impalcato)

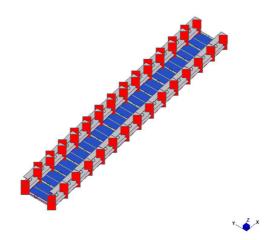

2596 Nm/m $m_{tot} =$

0,9615 0,4881



Vento caso di carico 1

Vento caso di carico 2


	N. ELABORATTO	REV.	FOGLIO
CIL	B.15	1	21 di 68
ingegneria civile			

Vento caso di carico 3

8.1.8 Variazioni termiche

Si considera ΔT_u = +/- 25°C (strutture in acciaio esposte).

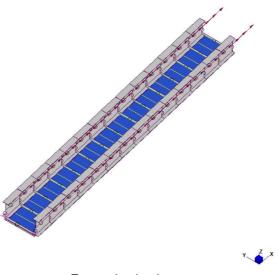
8.1.9 Forza sismica

Si esegue un analisi statica equivalente applicando alla passerella delle forzanti sismiche nelle direzioni x ed y, calcolate in base al valore sopra riportato dello spettro di progetto.

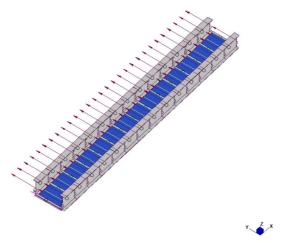
Le forzanti sismiche vengono applicate come forze distribuite sulla lunghezza della trave.

$$F_{x,y} = S_{ed} * M/L$$

Dove::


 S_{ed} spettro di risposta SLV = 0.511 g

M massa totale impalcato (comprensivo di permanenti e permanenti portati) = 32 t


L lunghezza impalcato = 23 m

 $F_{x,y}=3.49\;kN/m$

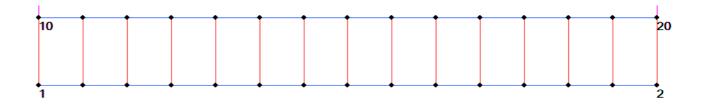
	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	22 di 68

Forza sismica in x

Forza sismica in y

8.1 Combinazioni di carico

Nell'analisi dell'impalcato sono state considerate le seguenti combinazioni:


CASES	1	2	3	4	5	6	7
							MASSA
	SLU1	SLU2	SLU3	SLE1	SLE2	SLE3	SISMICA
1: G1_Peso proprio [Freedom							
Case 1]	1,30	1,30	1,30	1,00	1,00	1,00	1,00
2: G2.1_Perm.portati [Freedom							
Case 1]	1,30	1,30	1,30	1,00	1,00	1,00	1,00
3: G2.2_Carter Parapetto							
[Freedom Case 1]	1,30	1,30	1,30	1,00	1,00	1,00	1,00
4: Q1_Folla compatta [Freedom							
Case 1]	1,50	1,50	1,50	1,00	1,00	1,00	0,20
5: Q8_Spinta parapetto [Freedom							
Case 1]	1,50	1,50	1,50	1,00	1,00	1,00	0,00
6: Q5.1_Vento-Caso 1 [Freedom	0,90	0,00	0,00	0,60	0,00	0,00	0,00

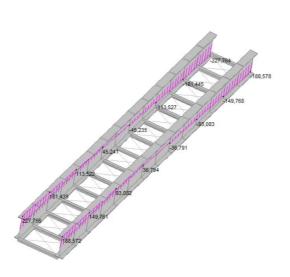
	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	23 di 68

Case 1]							
7: Q5.2_Vento-Caso 2 [Freedom							
Case 1]	0,00	0,90	0,00	0,00	0,60	0,00	0,00
8: Q5.3_Vento-Caso 3 [Freedom							
Case 1]	0,00	0,00	0,90	0,00	0,00	0,60	0,00
9: Q5.4_Neve [Freedom Case 1]	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10: SISMA X [Freedom Case 1]	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11: SISMA Y [Freedom Case 1]	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12: temp [Freedom Case 1]	0,00	0,00	0,00	0,00	0,00	0,00	0,00

8.1 Reazioni sulle spalle

Reazioni non ponderate calcolate per singola condizione di carico sulle spalle.

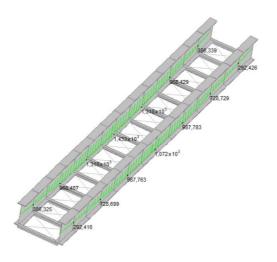
	ID	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)
Node 44: 1: G1_Peso proprio	1	0	0	53	0	0	
Node 44: 2: G2.1_Perm.portati	1	0	0	12	0	0	
Node 44: 3: G2.2_Carter Parapetto	1	0	0	5	0	0	
Node 44: 4: Q1_Folla compatta	1	0	0	78	0	0	0
Node 44: 5: Q8_Spinta parapetto	1	0	0	-9	0	0	0
Node 44: 6: Q5.1_Vento-Caso 1	1	0	0	-1	0	0	0
Node 44: 7: Q5.2_Vento-Caso 2	1	0	0	-11	0	0	0
Node 44: 8: Q5.3_Vento-Caso 3	1	0	0	-6	0	0	0
Node 44: 9: Q5.4_Neve	1	0	0	23	0	0	0
Node 44: 10: SISMA X	1	0	0	-2	0	0	0
Node 44: 11: SISMA Y	1	0	0	-22	0	0	0
Node 45: 1: G1_Peso proprio	2	0	0	53	0	0	
Node 45: 2: G2.1_Perm.portati	2	0	0	12	0	0	0
Node 45: 3: G2.2_Carter Parapetto	2	0	0	5		0	
Node 45: 4: Q1_Folla compatta	2	0	0	78	0	0	0
Node 45: 5: Q8_Spinta parapetto	2	0	0	-9	0	0	0


	N. E	LABORATT	ГО	REV.	FO	GLIO	
			B.15		1	24	di 68
ingegneria civile							
		l		I			
Node 45: 6: Q5.1_Vento-Caso 1	2	0	0	-1	0	0	0
Node 45: 7: Q5.2_Vento-Caso 2	2	0	0	-11	0	0	0
Node 45: 8: Q5.3_Vento-Caso 3	2	0	0	-6	0	0	0
Node 45: 9: Q5.4_Neve	2	0	0	23	0	0	0
Node 45: 10: SISMA X	2	0	0	2	0	0	0
Node 45: 11: SISMA Y	2	0	0	-22	0	0	0
Node 48: 1: G1_Peso proprio	20	0	0	53	0	0	
Node 48: 2: G2.1_Perm.portati	20	0	0	12	0	0	0
Node 48: 3: G2.2_Carter Parapetto	20	0	0	5		0	
Node 48: 4: Q1_Folla compatta	20	0	0	78	0	0	0
Node 48: 5: Q8_Spinta parapetto	20	0	-16	9	0	0	0
Node 48: 6: Q5.1_Vento-Caso 1	20	0	-21	23	0	0	0
Node 48: 7: Q5.2_Vento-Caso 2	20	0	-21	-11	0	0	0
Node 48: 8: Q5.3_Vento-Caso 3	20	0	-21	6	0	0	0
Node 48: 9: Q5.4_Neve	20	0	0	23	0	0	0
Node 48: 10: SISMA X	20	0	-9	3	0	0	0
Node 48: 11: SISMA Y	20	0	-80	22	0	0	0
Node 49: 1: G1_Peso proprio	10	0	0	53	0	0	
Node 49: 2: G2.1_Perm.portati	10	0	0	12	0	0	0
Node 49: 3: G2.2_Carter Parapetto	10	0	0	5		0	
Node 49: 4: Q1_Folla compatta	10	0	0	78	0	0	0
Node 49: 5: Q8_Spinta parapetto	10	0	-16	9	0	0	0
Node 49: 6: Q5.1_Vento-Caso 1	10	0	-21	23	0	0	0
Node 49: 7: Q5.2_Vento-Caso 2	10	0	-21	-11	0	0	0
Node 49: 8: Q5.3_Vento-Caso 3	10	0	-21	6	0	0	0
Node 49: 9: Q5.4_Neve	10	0	0	23	0	0	0
Node 49: 10: SISMA X	10	-161	9	-3	0	0	0
Node 49: 11: SISMA Y	10	0	-80	22	0	0	0

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	25 di 68

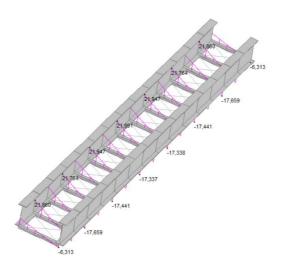
8.2 VERIFICHE PROFILI

Sollecitazione di taglio sulle travi


	MIN	MAX
SF2(kN)	-227,764	227,756
	[Bm:3]	[Bm:24]

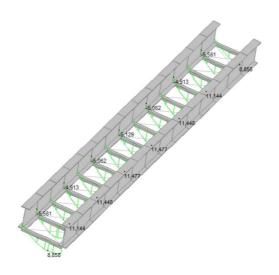
Sollecitazione momento sulle travi

	MIN	MAX
BM2(kN.m)	-8,635	1,433×10 ³
	[Bm:1]	[Bm:18]

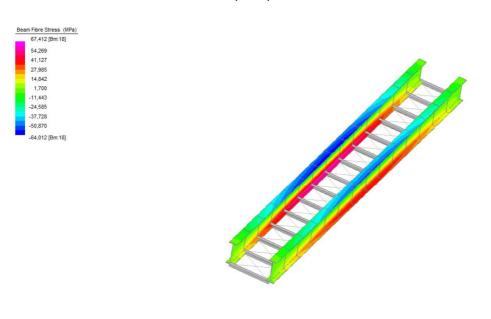


	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	26 di 68

Sollecitazione di taglio su traversi

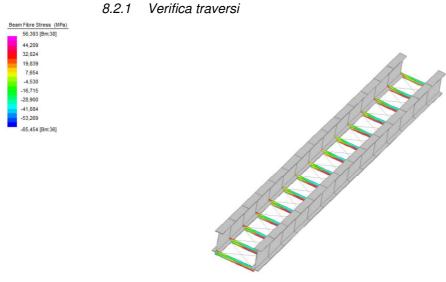

	MIN	MAX
SF2(kN)	-17,659	21,991
	[Bm:34]	[Bm:5]

Sollecitazione momento su traversi


	MIN	MAX
BM2(kN.m)	-5,581	11,477
	(Day 251	(Day: 421

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	27 di 68

8.2.1 Verifica trave principale

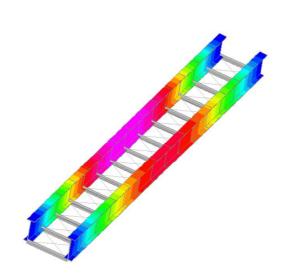


La massima tensione total fibre SLU risulta

 $\sigma_{max} = 72 \text{ MPa} < f_{yk} / \gamma_{M0} = 338 \text{ MPa}$

VERIFICA SODDISFATTA

Verifica instabilità flesso torsionale $M_{Rd \ svergolamento} = 1486 \ kNm > M_{Ed} = 1433 \ kNm$



	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	28 di 68

8.3 VERIFICHE DEFORMATA E COMFORT

8.3.1 Verifica freccia SLE

Y Z X

Freccia SLE = 16 mm = L/1437 VERIFICA SODDISFATTA

8.3.1 Analisi della frequenza

Si considerano le masse associate ai carichi permanenti portati e permanenti:

 $G_1+G_2 + \Psi_{2,i}{}^*Q$

Dove $\Psi_{2,i}$ per i ponti è pari a 0.75

Dall'analisi effettuata con il programma si sono ottenute le seguenti frequenze:

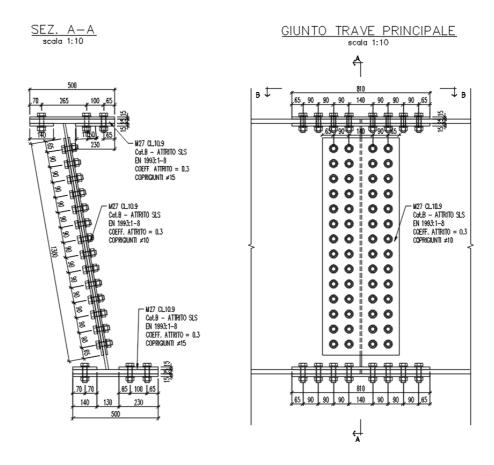
frequenze [Hz]		
1 modo	f=2.7 Hz	Orizzontale > 2.5 Hz VERIFICA SODDISFATTA
2 modo	f= 5.26 Hz	Torsionale / Verticale > 5 Hz VERIFICA SODDISFATTA
3 modo	f = 5.4 Hz	

Si assume che il grigliato assuma funzione di controventamento.

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	29 di 68

8.1 VERIFICHE GIUNTI

8.1.1 Giunto di continuità travi principali


Al fine di garantire la continuità delle travi principali si prevede di dividere la lunghezza totale pari a circa 23 m in n. 3 conci: concio centrale di lunghezza 13 m e n. 2 conci d'estremità di lunghezza pari a circa 5 m.

Le massime sollecitazioni SLU in corrispondenza del giunto sono le seguenti:

 $M_{Ed} = 1200 \text{ kNm}$

 $V_{Ed} = 120 \text{ kN}$

Per la verifica del giunto si considera una distribuzione plastica degli sforzi, assumendo che il momento flettente venga interamente trasferito dai bulloni sulle piattabande (sollecitate da $N_{Ed} = M_{Ed}/h = 800$ kN), e che il taglio venga interamente trasferito dall'anima.

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	30 di 68

Verifica giunto piattabande

VERIFICA DEL	COLLEGAN	IENTO IN F	PIATTABAN	IDA				
Sollecitazioni m	assime SLU							
N _{Ed} [kN]	800	sollecitaz	ione assiale	e piattaban	da			
Sollecitazioni m	assime SLE							
N _{Ed.ser} [kN]	615	sollecitaz	ione assiale	e piattaban	da			
Piattabanda			l			1		
acciaio	S355							
f _u [Mpa]	510							
f _y [Mpa]	355							
L [mm]	500		piattabano					
s [mm]	25		piattaband					
A _{ptb} [mm ²]	12500	area lorda	a piattaban	da				
Connessione a	taglio di	Cat.B	connessio	ne ad attrite	allo stato I	imite di se	rvizio	
n _b	12	numero b				0. 50		
n	2		elle superfi	ici di attrito				
d [mm]	27	diametro		or ar arrillo				
d [mm]	30	diametro						
*				no				
A _{res} [mm ²]	459		stente bullo					
A [mm ²]	573	area resis	stente bullo	ne (parte n	on filettata)			
classe	10.9							
f _{ub} [Mpa]	1000		di rottura d		1			
∝	0,3			i	del trattame	nto super	riciale C	
k _s	1	bulloni in	fori normali	i				
Υмз	1,10							
F _{p,Cd} [kN]	321,3	forza di p	recarico de	l bullone (se	erraggio cor	itrollato)		
Verifica dei bul	loni a scorr	imento all	o stato limi	te di serviz	io			
F _{v,Ed} [kN]	25,6							
F _{s,Rd} [kN]	87,6	resistenza	di progetto	allo scorrir	mento di un	bullone pr	ecaricato	
F _{v,Ed} / F _{s,Rd}	0,29	≤	1	VERIFICA	SODDISFA	TTA		
Verifica dei bul								
Si considera che		aglio intere	ssa la parte	e non filetta	ta del bullor	1e		
F _{v,Ed} [kN]	33,3							
F _{v,Rd} [kN]	220,3				un bullone			
F _{v,Ed} / F _{v,Rd}	0,15	≤	1	VERIFICA	SODDISFA	ITA		
Verifica a rifolla	amento (lato	niattahan	da)					
e ₁ [mm]	65	•	,	la lembo este	rno della nias	stra in direz	ione del carico a	nnlicato
e ₂ [mm]	65							al carico applicato
p ₁ [mm]	90				ico applicato			
p ₂ [mm]	265				nale al carico	annlicato		
	497,3			o al rifollame		pp.iout0		
F _{b,Rd} [kN]		resistenza ≤	a ai progetti 1		SODDISFA	TTA		
F _{v,Ed} / F _{b,Rd}	0,13		•	VEHIFICA	CODDISPA			
Verifica piattab	anda							
n _b	3	numero b	ulloni in line	ea sulla piat	tabanda pe	r il calcolo	dell'area netta	
A _{net} [mm ²]	10250	area al ne	etto dei fori					
N _{pl,Rd} [kN]	4226			lla sezione l				
N _{Ed} / N _{pl,Rd}	0,19	≤	1	VERIFICA	SODDISFA	TTA		
NI [I-NI]	0704	vo el-teri		 			doi f	
N _{u,Rd} [kN]	3764				etta in corris		a del tori	
$N_{Ed}/N_{u,Rd}$	0,21	≤	1	V ERIFICA	SODDISFA	HA		

N. ELABORATTO

B.15

REV.

1

FOGLIO

31 di 68

to [Mpa] 510 to [Mpa] 355 to [mm] 500 to [mm] 15 to [mm] 500 to [mm] 15 to [mm] 16 to [mm] 16 to [mm] 17 to area lorda coprigiunti esterni to mumero coprigiunti interni to area lorda coprigiunti interni to [mm] 15 to [mm] 16 to [mm] 17 to area lorda coprigiunti interni to [mm] 15 to [mm] 17 to area lorda coprigiunti interni to [mm] 18 to distanza asse bullone da lembo esterno della piastra in direzione del carico applicato interasse bulloni in direzione del carico applicato per bulloni in direzione del carico applicato per bulloni in direzione del carico applicato per bulloni interna nella direzione del carico applicato per bulloni interni nella direzione del carico applicato per bulloni interni nella direzione del carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato per bulloni di bordo nella direzione ortogonale al carico applicato	Coprigiunti									
Mar 1 1 1 1 1 1 1 1 1	acciaio	S355								
numero coprigiunti esterni larghezza coprigiunto esterno spessore coprigiunto esterno larghezza coprigiunto esterno spessore coprigiunti esterni numero coprigiunti interni numero coprigiunti esterni numero coprigiunto esterno numero coprigiunto esterno numero coprigiunti esterni numero coprigiunto esterno numero coprigiunto esterno numero coprigiunto esterno numero coprigiunto esterno numero coprigiunti esterni numero coprigiunto esterno numero coprigiunti esterni numero coprigiunto esterno numero coprigiunti esterni numero copr	f _u [Mpa]	510								
Source S	f _y [Mpa]	355								
spessore coprigiunto esterno As [mm²] 7500 Area lorda coprigiunto esterno As [mm²] 7500 Area lorda coprigiunto interno As [mm²] 1400 As [mm²] 150 As pessore coprigiunto interno As [mm²] 150 As pessore coprigiunto interno As [mm²] 150 As [mm²] 150 As pessore coprigiunto interno As [mm²] 11700 Area lorda coprigiunti interni As As pessore coprigiunto interno As [mm²] 11700 Area lorda coprigiunti As As pessore coprigiunto interno As [mm²] 11700 Area lorda coprigiunti As Pessore coprigiunto As [mm²] 11700 Area lorda coprigiunto As [mm²] 650 As distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato As [mm] 650 As distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato As [mm] 90 As [mm] 90 As per bulloni in direzione del carico applicato As per bulloni interni nella direzione del carico applicato As per bulloni interni nella direzione del carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni interni nella direzione ortogonale al carico applicato As per bulloni di bordo nella direzione ortogonale al carico applicato As	n _e	1	numero c	oprigiunti e	sterni					
As [mm²] 7500 area lorda coprigiunti esterni	L _e [mm]	500	larghezza	coprigiunt	o esterno					
numero coprigiunti interni larghezza coprigiunto interno larghezza asse bullona interno larghezza sepulloni interno largheza antico applicato largheza carico applicato largheza c	s _e [mm]	15	spessore	coprigiunto	esterno					
Imm	A _e [mm ²]	7500	area lorda	a coprigiunt	i esterni					
spessore coprigiunto interno A [mm²] 4200 area lorda coprigiunti interni A = A _e + A _i [mm²] 11700 area totale lorda coprigiunti A=A _e + A _i [mm²] 11700 area totale lorda coprigiunti A=A _e + A _i [mm²] 11700 area totale lorda coprigiunti A=A _e + A _i [mm²] 11700 area totale lorda coprigiunti A=A _e + A _i [mm²] 11700 area totale lorda coprigiunti A=A _e + A _i [mm²] 11700 area totale lorda coprigiunti A=A _e + A _i [mm²] 11700 area totale lorda coprigiunti A=A _e + A _i [mm²] 65 distanza asse bullone da lembo esterno della piastra in direzione del carico applicato A _e [mm] 90 interasse bulloni in direzione del carico applicato A _e 0,722 per bulloni in direzione ortogonale al carico applicato A _e 0,750 per bulloni interni nella direzione del carico applicato A _e 0,750 per bulloni di bordo nella direzione ortogonale al carico applicato A _e 2,500 per bulloni interni nella direzione ortogonale al carico applicato A _e 2,500 per bulloni interni nella direzione ortogonale al carico applicato A _e 2,500 per bulloni interni nella direzione ortogonale al carico applicato A _e 2,500 per bulloni interni nella direzione ortogonale al carico applicato A _e 2,500 per bulloni interni nella direzione ortogonale al carico applicato A _e 1,600 per bullone A A _e 1,600 per bulloni interni nella direzione ortogonale al carico applicato A _e 1,600 per bullone A A _e 1,600 per bullone B A _e 1,600 per bullone C A _e 1,600 per bullone B A _e 1,600 per bullone C A _e 1,600 per bullone C	n _i	2	numero c	oprigiunti in	itemi					
A=A _e +A _i [mm²] 4200 area lorda coprigiunti interni A=A _e +A _i [mm²] 11700 area totale lorda coprigiunti A=A _e +A _i [mm²] 11700 area totale lorda coprigiunti A=A _e +A _i [mm²] 11700 area totale lorda coprigiunti A=A _e +A _i [mm²] 65 distanza asse bullone da lembo esterno della piastra in direzione del carico applicato Batis [mm] 65 distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato Interasse bulloni in direzione del carico applicato Interasse bulloni in direzione ortogonale al carico applicato Interasse bulloni in direzione del carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni intermi nella direzione ortogonale al carico applicato Interasse bulloni int	L _i [mm]	140	larghezza	coprigiunt	o interno					
A=A _e +A _i [mm²] 11700 area totale lorda coprigiunti Verifica a rifollamento (lato coprigiunto)	s _i [mm]	15	spessore	coprigiunto	interno					
	A _i [mm ²]	4200	area lorda	a coprigiunt	i interni					
distanza asse bullone da lembo esterno della piastra in direzione del carico applicato distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato distanza asse bulloni in direzione del carico applicato distanza asse bulloni in direzione del carico applicato distanza asse bulloni in direzione del carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni interni nella direzione del carico applicato distanza asse bulloni interni nella direzione ortogonale al carico applicato distanza asse bulloni interni nella direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in ella direzione ortogonale al carico applicato distanza asse bulloni in ella direzione ortogonale al carico applicato distanza al carico applicato direzione ortogonale al carico	$A=A_e+A_i [mm^2]$	11700	area total	e lorda cop	rigiunti					
distanza asse bullone da lembo esterno della piastra in direzione del carico applicato distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato distanza asse bulloni in direzione del carico applicato distanza asse bulloni in direzione del carico applicato distanza asse bulloni in direzione del carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni interni nella direzione del carico applicato distanza asse bulloni interni nella direzione ortogonale al carico applicato distanza asse bulloni interni nella direzione ortogonale al carico applicato distanza asse bulloni in direzione ortogonale al carico applicato distanza asse bulloni in ella direzione ortogonale al carico applicato distanza asse bulloni in ella direzione ortogonale al carico applicato distanza al carico applicato direzione ortogonale al carico										
distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato interasse bulloni in direzione del carico applicato 20 [mm] 90 interasse bulloni in direzione del carico applicato 20 [mm] 265 interasse bulloni in direzione ortogonale al carico applicato 20 [mm] 265 interasse bulloni in direzione ortogonale al carico applicato 21 [mm] 265 per bulloni di bordo nella direzione del carico applicato 22 [mm] 265 per bulloni di bordo nella direzione del carico applicato 23 [mm] 265 per bulloni interni nella direzione ortogonale al carico applicato 24 [mm] 27 [mm] 27 [mm] 28 [mm] 29	Verifica a rifolla	amento (lat	o coprigiur	nto)						
tinterasse bulloni in direzione del carico applicato 265 interasse bulloni in direzione ortogonale al carico applicato 27	e ₁ [mm]	65	distanza a	sse bullone d	da lembo este	erno della pia:	stra in direzio	one del carico	applicato	
22 [mm] 265 interasse bulloni in direzione ortogonale al carico applicato 2 0,722 per bulloni di bordo nella direzione del carico applicato 2 0,750 per bulloni interni nella direzione del carico applicato 2 2,500 per bulloni di bordo nella direzione ortogonale al carico applicato 2 2,500 per bulloni interni nella direzione ortogonale al carico applicato 3 298,4 bullone A 5 2,84 bullone B 5 2,84,0 [kN] 309,8 bullone B 5 2,84,0 [kN] 309,8 bullone C 5 2,84,0 [kN] 309,8 bullone D 7 2,84 versistenza di progetto al rifollamento 7 2,84 verifica coprigiunto 7 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta 8 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta 8 4 verifica (kN) 3956 resistenza platica della sezione lorda 8 4 verifica SODDISFATTA 8 4 verifica SODDISFATTA 8 5 verifica coprigiunto 8 6 verifica coprigiunto 9 000 area al netto dei fori 8 7 verifica SODDISFATTA 8 6 verifica SODDISFATTA 8 7 verifica SODDISFATTA 8 8 verifica SODDISFATTA 8 9 000 area al netto dei fori	e ₂ [mm]	65	distanza a	sse bullone o	da lembo este	erno della pia:	stra in direzio	one ortogona	le al carico a	pplicato
0,722 per bulloni di bordo nella direzione del carico applicato 0,750 per bulloni interni nella direzione del carico applicato 2,500 per bulloni di bordo nella direzione ortogonale al carico applicato 2,500 per bulloni interni nella direzione ortogonale al carico applicato 2,500 per bulloni interni nella direzione ortogonale al carico applicato bi _{b,Rd,A} [kN] 298,4 bullone A bullone B b _{b,Rd,C} [kN] 298,4 bullone C b _{b,Rd,D} [kN] 309,8 bullone D c _{b,Rd,D} [kN] 309,8 bullone D c _{b,Rd} [kN] 298,4 resistenza di progetto al rifollamento cv,Ed / F _{b,Rd} 0,11 ≤ 1 VERIFICA SODDISFATTA //erifica coprigiunto //erif	p ₁ [mm]	90	interasse b	oulloni in dire	zione del car	ico applicato				
0,750 per bulloni interni nella direzione del carico applicato 2,500 per bulloni di bordo nella direzione ortogonale al carico applicato 2,500 per bulloni interni nella direzione ortogonale al carico applicato 2,500 per bulloni interni nella direzione ortogonale al carico applicato bi _{b,Rd,A} [kN] 298,4 bullone A bullone B b _{b,Rd,C} [kN] 298,4 bullone C b _{b,Rd,D} [kN] 309,8 bullone D c _{b,Rd,D} [kN] 298,4 resistenza di progetto al rifollamento c _{v,Ed} / F _{b,Rd} 0,11 ≤ 1 VERIFICA SODDISFATTA Verifica coprigiunto lb 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta Anet [mm²] 9000 area al netto dei fori N _{PI,Rd} [kN] 3956 resistenza platica della sezione lorda N _{PI,Rd} [kN] 3956 resistenza ultima della sezione netta in corrispondenza dei fori	p ₂ [mm]	265	interasse b	oulloni in dire	zione ortogor	nale al carico	applicato			
2,500 per bulloni di bordo nella direzione ortogonale al carico applicato 2,500 per bulloni interni nella direzione ortogonale al carico applicato 5,8d,A [kN] 298,4 bullone A 5,8d,B [kN] 309,8 bullone B 5,8d,C [kN] 298,4 bullone C 5,8d,D [kN] 309,8 bullone D 5,8d,D [kN] 309,8 bullone D 5,8d,F [kN] 298,4 resistenza di progetto al rifollamento 5,8d [kN] 298,4 resistenza di progetto al rifollamento 6,8d [kN] 298,4 resistenza di progetto al rifollamento 7,8d [kN] 300 area al netto dei fori 7,8d [kN] 300 area al netto dei fori 7,8d [kN] 300 area al netto dei fori 7,8d [kN] 300 area al netto della sezione lorda 7,8d [kN] 7,8d	α	0,722	per bulloni	di bordo nell	a direzione d	el carico appl	icato			
2,500 per bulloni interni nella direzione ortogonale al carico applicato ib,Rd,A [kN] 298,4 bullone A ib,Rd,B [kN] 309,8 bullone B ib,Rd,C [kN] 298,4 bullone C ib,Rd,D [kN] 309,8 bullone D ib,Rd [kN] 298,4 resistenza di progetto al rifollamento ib,Rd [kN] 398,4 resistenza di progetto al rifollamento ib,Rd [kN] 398,4 resistenza di progetto al rifollamento ib,Rd [kN] 398,4 resistenza platica della sezione lorda ib,Rd [kN] 3956 resistenza platica della sezione lorda ib,Rd [kN] 3956 resistenza platica della sezione netta in corrispondenza dei fori	α	0,750	per bulloni	interni nella	direzione del	carico applic	ato			
b_BRJ,B [kN] 298,4 bullone B b_BRJ,B [kN] 309,8 bullone B b_BRJ,B [kN] 298,4 bullone C b_BRJ,B [kN] 309,8 bullone D b_BRJ,B [kN] 298,4 resistenza di progetto al rifollamento c_V,Ed / Fb,Rd 0,11 ≤ 1 VERIFICA SODDISFATTA Verifica coprigiunto verifica coprig	k	2,500	per bulloni	di bordo nell	la direzione o	rtogonale al c	arico applica	ato		
ib_Rd,c [kN] 309,8 bullone B ib_Rd,c [kN] 298,4 bullone C ib_Rd,D [kN] 309,8 bullone D ib_Rd,D [kN] 309,8 bullone D ib_Rd,D [kN] 298,4 resistenza di progetto al rifollamento ib_Rd [kN] 298,4 resistenza di progetto al rifollamento ib_Rd N_Rd	k	2,500	per bulloni	interni nella	direzione orto	gonale al ca	rico applicato)		
ib,Rd,D [kN] 298,4 bullone D ib,Rd,D [kN] 309,8 bullone D ib,Rd,E [kN] 298,4 resistenza di progetto al rifollamento ib,Rd [kN] 298,4 resistenza di progetto al rifollamento ib,Rd [kN] 298,4 resistenza di progetto al rifollamento ib,Rd No,Rd No,Rd No,Rd identifica coprigiunto ident	F _{b,Rd,A} [kN]	298,4	bullone A							
ib,Rd,D [kN] 309,8 bullone D resistenza di progetto al rifollamento ib,Rd [kN] 298,4 resistenza di progetto al rifollamento ib,Rd [kN] 298,4 resistenza di progetto al rifollamento ib,Rd Fb,Rd O,11 ≤ 1 VERIFICA SODDISFATTA iverifica coprigiunto ib 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta id Anet [mm²] 9000 area al netto dei fori iverifica coprigiunto ib 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta id Anet [mm²] 9000 area al netto dei fori iverifica coprigiunto id 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta id Anet [mm²] 9000 area al netto dei fori iverifica soddisa sezione lorda iverifica soddisfatta iverifica sod	F _{b,Rd,B} [kN]	309,8	bullone B							
Interpretation Presistent and progettors and prog	F _{b.Rd.C} [kN]	298,4	bullone C							
Interpretation Presistent and progettors and prog	F _{b,Rd,D} [kN]	309,8	bullone D							
F _{v,Ed} / F _{b,Rd} 0,11 ≤ 1 VERIFICA SODDISFATTA //erifica coprigiunto //erifica coprig	F _{b,Rd} [kN]	298,4	resistenza	a di progett	o al rifollame	ento				
nb 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta Anet [mm²] 9000 area al netto dei fori Npl.Rd [kN] 3956 resistenza platica della sezione lorda Ned / Npl.Rd 0,20 ≤ 1 VERIFICA SODDISFATTA Nu.Rd [kN] 3305 resistenza ultima della sezione netta in corrispondenza dei fori	F _{v.Ed} / F _{b.Rd}	0,11	≤	1	VERIFICA	SODDISFA	TTA			
nb 3 numero bulloni in linea sulla piattabanda per il calcolo dell'area netta Anet [mm²] 9000 area al netto dei fori Npl.Rd [kN] 3956 resistenza platica della sezione lorda Ned / Npl.Rd 0,20 ≤ 1 VERIFICA SODDISFATTA Nu.Rd [kN] 3305 resistenza ultima della sezione netta in corrispondenza dei fori										
A _{net} [mm²] 9000 area al netto dei fori N _{pl,Rd} [kN] 3956 resistenza platica della sezione lorda N _{Ed} / N _{pl,Rd} 0,20 ≤ 1 VERIFICA SODDISFATTA N _{u,Rd} [kN] 3305 resistenza ultima della sezione netta in corrispondenza dei fori	Verifica coprigi	unto								
N _{pl,Rd} [kN] 3956 resistenza platica della sezione lorda N _{Ed} / N _{pl,Rd} 0,20 ≤ 1 VERIFICA SODDISFATTA N _{u,Rd} [kN] 3305 resistenza ultima della sezione netta in corrispondenza dei fori	n _b		numero b	ulloni in line	ea sulla piat	tabanda pe	r il calcolo d	lell'area net	ta	
N _{pl,Rd} [kN] 3956 resistenza platica della sezione lorda N _{Ed} / N _{pl,Rd} 0,20 ≤ 1 VERIFICA SODDISFATTA N _{u,Rd} [kN] 3305 resistenza ultima della sezione netta in corrispondenza dei fori	A _{net} [mm ²]	9000	area al ne	etto dei fori						
N _{Ed} / N _{pl,Rd} 0,20 ≤ 1 VERIFICA SODDISFATTA N _{u,Rd} [kN] 3305 resistenza ultima della sezione netta in corrispondenza dei fori	-									
N _{Ed} / N _{pl,Rd} 0,20 ≤ 1 VERIFICA SODDISFATTA N _{u,Rd} [kN] 3305 resistenza ultima della sezione netta in corrispondenza dei fori	N _{pl,Rd} [kN]	3956	resistenza	a platica de	lla sezione l	orda				
	N _{Ed} / N _{pl,Rd}	0,20	≤	1	VERIFICA	SODDISFA	TTA			
J _{Ed} / N _{u,Rd} 0,24 ≤ 1 VERIFICA SODDISFATTA	N _{u,Rd} [kN]	3305	resistenza	a ultima del	la sezione n	etta in corri	spondenza	dei fori		
	N _{Ed} / N _{u,Rd}	0,24	≤	1	VERIFICA	SODDISFA	TTA			

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	32 di 68

Verifica giunto anima

verilica giurito	o ariiiria							
GIUNTO DI CO	NTINUITÀ T	RAVE DOP	PIO T					
VERIFICA DEL	COLLEGAN	MENTO IN A	NIMA					
Sollecitazioni m	assime SLU							
V _{Ed} [kN]	120	taglio anii	lio anima					
Sollecitazioni m	assime SLE							
σ_{sup} [MPa]	0	tensione	superiore a	nima				
σ_{inf} [MPa]	0	tensione	inferiore ani	ima				
τ [MPa]	0	tensione	tangenziale	anima				
N _{ed.ser} [kN]	0	sollecitazi	one assiale	anima				
M _{ed.ser} [kNm]	0	momento	flettente ar	nima				
V _{ed.ser} [kN]	100	taglio anii	ma					
Anima								
acciaio	S355							
f _u [Mpa]	510							
f _y [Mpa]	355							
h _w [mm]	1450	altezza aı	nima					
t _w [mm]	15	spessore	anima					
A _w [mm ²]	21750	area lorda	a piattaband	da				
Connessione a	taglio di	Cat.B	connession	ne ad attrito	allo stato li	mite di serv	izio	
n	2	numero d	elle superfic	ci di attrito				
d [mm]	27	diametro	bullone					
d ₀ [mm]	30	diametro	foro					
A _{res} [mm ²]	459	area resis	tente bullor	пе				
A [mm ²]	573	area resis	tente bullor	ne (parte no	n filettata)			
classe	10.9							
f _{ub} [Mpa]	1000	tensione	di rottura de	el bullone				
∞	0,3	coefficien	te di attrito	per classe o	del trattame	nto superfic	ciale C	
k _s	1	bulloni in	fori normali					
γмз	1,10							
F _{p,Cd} [kN]	321,3	forza di p	recarico del	bullone (se	rraggio con	trollato)		

N. ELABORATTO

B.15

REV.

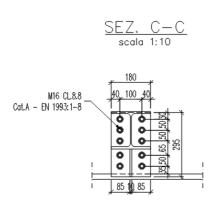
1

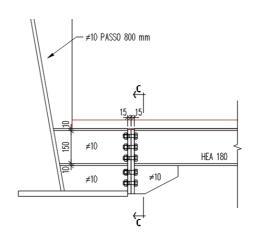
FOGLIO

33 di 68

_	(F _{v,Ed,ver} / F n tensione tensione tensione	COL. 2 superiore inferiore tangenziale	ventale e ve 0,00	SODDISFA		VERIFICA	SODDISFA	TTA
e due com)² + ez. netta i -5	ponenti di (F _{v,Ed,ver} / F n tensione tensione	sforzo orizz b.Rd.ver) ² = COL. 2 superiore	contale e ve	SODDISFAT	ГТА	VERIFICA	SODDISFA	ПТА
e due com 2) + ez. netta i	ponenti di (F _{v,Ed,ver} / F n tensione	sforzo orizz b,Rd,ver) ² = COL. 2 superiore	ontale e ve	SODDISFAT	ГТА	VERIFICA	SODDISFA	ITA
e due com	ponenti di (F _{v,Ed,ver} / F	sforzo orizz _{b,Rd,ver}) ² =	ontale e ve	SODDISFAT	ГТА	VERIFICA	SODDISFA	ΤΤΑ
due com	ponenti di (F _{v,Ed,ver} / F	sforzo orizz _{b,Rd,ver}) ² =	ontale e ve	SODDISFAT	ГТА	VERIFICA	SODDISFA	ΤΤΑ
due com	ponenti di	sforzo orizz	ontale e ve	SODDISFAT	ГТА	VERIFICA	SODDISFA	ТТА
due com	ponenti di	sforzo orizz	ontale e ve	SODDISFAT	ГТА			
- , -		-		SODDISFA				
298,4	resistenza	a di progetto	al rifollame	nto per cari	co verticale			
0,01	≤	1						
298,4	resistenza	a di progetto	al rifollame	nto per cari	co orizzonta	ale		
90								
90								
65								
65								
mento								
0,01	_		VEIMIOA	JOBBIO! A				
					ΓΤΔ			
	resistenza	di progetto	a tanlin di i	ın bullone				
	tagilo intere	ssa ia parie	non mettat	a dei bullor	le			
				سمالييط لماميم	_			
0,02	≤	1	VERIFICA S	SODDISFAT	ГТА			
87,6	resistenza	a di progetto			· ·	caricato		
2,1								
	2,1 87,6 0,02 oni a tagli il piano di 2,5 274,8 0,01 mento 65 90 90 298,4 0,01	2,1 87,6 resistenza 0,02 ≤ coni a taglio allo stato il piano di taglio intere 2,5 274,8 resistenza 0,01 ≤ mento 65 65 90 90 298,4 resistenza 0,01 ≤	2,1 87,6 resistenza di progetto 0,02 ≤ 1 oni a taglio allo stato limite ulti il piano di taglio interessa la parte 2,5 274,8 resistenza di progetto 0,01 ≤ 1 mento 65 65 90 90 298,4 resistenza di progetto 0,01 ≤ 1	2,1 87,6 resistenza di progetto allo scorrim 0,02 ≤ 1 VERIFICA S oni a taglio allo stato limite ultimo il piano di taglio interessa la parte non filettat 2,5 274,8 resistenza di progetto a taglio di 0,01 ≤ 1 VERIFICA S mento 65 65 90 90 298,4 resistenza di progetto al rifollame 0,01 ≤ 1 VERIFICA S	87,6 resistenza di progetto allo scorrimento di un 0,02 ≤ 1 VERIFICA SODDISFA¹ coni a taglio allo stato limite ultimo il piano di taglio interessa la parte non filettata del bullon 2,5 274,8 resistenza di progetto a taglio di un bullone 0,01 ≤ 1 VERIFICA SODDISFA¹ mento 65 65 90 90 298,4 resistenza di progetto al rifollamento per cari 0,01 ≤ 1 VERIFICA SODDISFA¹	2,1 87,6 resistenza di progetto allo scorrimento di un bullone prec 0,02 ≤ 1 VERIFICA SODDISFATTA oni a taglio allo stato limite ultimo il piano di taglio interessa la parte non filettata del bullone 2,5 274,8 resistenza di progetto a taglio di un bullone 0,01 ≤ 1 VERIFICA SODDISFATTA mento 65 65 90 90 90 298,4 resistenza di progetto al rifollamento per carico orizzonta 0,01 ≤ 1 VERIFICA SODDISFATTA	2,1 87,6 resistenza di progetto allo scorrimento di un bullone precaricato 0,02 ≤ 1 VERIFICA SODDISFATTA oni a taglio allo stato limite ultimo il piano di taglio interessa la parte non filettata del bullone 2,5 274,8 resistenza di progetto a taglio di un bullone 0,01 ≤ 1 VERIFICA SODDISFATTA mento 65 65 65 90 90 90 298,4 resistenza di progetto al rifollamento per carico orizzontale 0,01 ≤ 1 VERIFICA SODDISFATTA	2,1 87,6 resistenza di progetto allo scorrimento di un bullone precaricato 0,02 ≤ 1 VERIFICA SODDISFATTA Dini a taglio allo stato limite ultimo il piano di taglio interessa la parte non filettata del bullone 2,5 274,8 resistenza di progetto a taglio di un bullone 0,01 ≤ 1 VERIFICA SODDISFATTA mento 65 65 90 90 298,4 resistenza di progetto al rifollamento per carico orizzontale 0,01 ≤ 1 VERIFICA SODDISFATTA

Copyrigiunti	12 12 1	-,								
	Coprigiunti									
f _v [Mpa] 355	acciaio	S355								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _u [Mpa]	510								
t, [mm]	f _y [Mpa]	355								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h _c [mm]	1300	altezza c	oprigiunto						
A _c [mm²] 26000 area lorda coprigiunti	t _c [mm]	10	spessore	coprigiunto						
Wc [mm³] 5,63E+06 momento statico coprigiunti lordi Image: station of the control of the contro	n	2	numero d	oprigiunti						
	A _c [mm ²]	26000	area lord	a coprigiunt	i					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W _c [mm ³]	5,63E+06	momento	statico cop	rigiunti lordi					
e1 [mm] 65 distanza asse bullone da lembo esterno della piastra in direzione del carico applicato e2 [mm] 65 distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato p1 [mm] 90 interasse bulloni in direzione ortogonale al carico applicato p2 [mm] 90 interasse bulloni in direzione ortogonale al carico applicato Fb,Rd [kN] 397,8 resistenza di progetto al rifollamento Fv,Ed / Fb,Rd 0,01 \leq 1 Verifica coprigiunti sez. netta COL. 1 VERIFICA SODDISFATTA Verifica coprigiunti sez. netta COL. 1 VERIFICA SODDISFATTA Verifica ($\sigma^2 + 3\tau^2$) ^{1/2} 12 tensione tangenziale ($\sigma^2 + 3\tau^2$) ^{1/2} 12 tensione ideale Verifica coprigiunti sez. lorda VERIFICA SODDISFATTA Verifica coprigiunti sez. lorda VERIFICA SODDISFATTA Verifica coprigiunti sez. lorda VERIFICA SODDISFATTA Verifica coprigiunti sez. lorda Intensione superiore σ_{sup} [Mpa] -1 tensione inferiore σ_{sup} [Mpa] 1 tensione inferiore σ_{sup} [Mpa] 5 tensione inferiore σ	J _c [mm ⁴]	3,66E+09	momento	d'inerzia co	prigiunti lor	di				
e1 [mm] 65 distanza asse bullone da lembo esterno della piastra in direzione del carico applicato e2 [mm] 65 distanza asse bullone da lembo esterno della piastra in direzione ortogonale al carico applicato p1 [mm] 90 interasse bulloni in direzione ortogonale al carico applicato p2 [mm] 90 interasse bulloni in direzione ortogonale al carico applicato Fb,Rd [kN] 397,8 resistenza di progetto al rifollamento Fv,Ed / Fb,Rd 0,01 \leq 1 Verifica coprigiunti sez. netta COL. 1 VERIFICA SODDISFATTA Verifica coprigiunti sez. netta COL. 1 VERIFICA SODDISFATTA Verifica ($\sigma^2 + 3\tau^2$) ^{1/2} 12 tensione tangenziale ($\sigma^2 + 3\tau^2$) ^{1/2} 12 tensione ideale Verifica coprigiunti sez. lorda VERIFICA SODDISFATTA Verifica coprigiunti sez. lorda VERIFICA SODDISFATTA Verifica coprigiunti sez. lorda VERIFICA SODDISFATTA Verifica coprigiunti sez. lorda Intensione superiore σ_{sup} [Mpa] -1 tensione inferiore σ_{sup} [Mpa] 1 tensione inferiore σ_{sup} [Mpa] 5 tensione inferiore σ										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Verifica a rifol	amento								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e ₁ [mm]	65	distanza a	sse bullone o	da lembo este	erno della pias	stra in direz	ione del caric	o applicato	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e ₂ [mm]	65	distanza a	sse bullone d	da lembo este	erno della pias	stra in direz	ione ortogona	le al carico a	pplicato
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p ₁ [mm]	90	interasse	bulloni in dire	zione del car	ico applicato				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p ₂ [mm]	90	interasse	bulloni in dire	zione ortogor	nale al carico	applicato			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F _{b,Rd} [kN]	397,8	resistenz	a di progetto	o al rifollame	ento				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F _{v,Ed} / F _{b,Rd}	0,01	≤	1	VERIFICA	SODDISFA	TTA			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Verifica coprig	iunti sez. ne	etta	COL. 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	σ _{sup} [Mpa]	-2	tensione	superiore						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ _{inf} [Mpa]	2	tensione	inferiore						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	τ [Mpa]	7	tensione	tangenziale						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\sigma^2 + 3\tau^2)^{1/2}$	12	tensione	ideale						
$ \sigma_{\text{sup}} [\text{Mpa}] \qquad -1 \qquad \text{tensione superiore} \qquad \qquad \\ \sigma_{\text{inf}} [\text{Mpa}] \qquad 1 \qquad \text{tensione inferiore} \qquad \qquad \\ \tau [\text{Mpa}] \qquad 5 \qquad \text{tensione tangenziale} \qquad \qquad \\ (\sigma^2 + 3\tau^2)^{1/2} \qquad 8 \qquad \text{tensione ideale} \qquad \qquad \qquad $	σ_{id} / (f _u / γ_{M2})	0,03	≤	1	VERIFICA	SODDISFA	TTA			
$ \sigma_{\text{sup}} [\text{Mpa}] \qquad -1 \qquad \text{tensione superiore} \qquad \qquad \\ \sigma_{\text{inf}} [\text{Mpa}] \qquad 1 \qquad \text{tensione inferiore} \qquad \qquad \\ \tau [\text{Mpa}] \qquad 5 \qquad \text{tensione tangenziale} \qquad \qquad \\ (\sigma^2 + 3\tau^2)^{1/2} \qquad 8 \qquad \text{tensione ideale} \qquad \qquad \qquad $										
σ _{inf} [Mpa] 1 tensione inferiore τ [Mpa] 5 tensione tangenziale (σ²+3τ²)¹¹² 8 tensione ideale	Verifica coprig	iunti sez. lo	rda							
τ [Mpa] 5 tensione tangenziale $(\sigma^2 + 3\tau^2)^{1/2}$ 8 tensione ideale	σ _{sup} [Mpa]	-1	tensione	superiore						
(o ² +3τ ²) ^{1/2} 8 tensione ideale	σ _{inf} [Mpa]	1	tensione	inferiore						
	τ [Mpa]	5	tensione	tangenziale						
$\sigma_{id} / (f_y / \gamma_{M0})$ 0,02 \leq 1 VERIFICA SODDISFATTA	$(\sigma^2 + 3\tau^2)^{1/2}$	8	tensione	ideale						
	σ_{id} / (f _y / γ_{M0})	0,02	≤	1	VERIFICA	SODDISFA	ТТА			


	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	34 di 68


8.1.1 Giunto traversi HEA180

Le massime sollecitazioni SLU in corrispondenza del giunto sono le seguenti:

 $M_{Ed} = 15 \text{ kNm}$

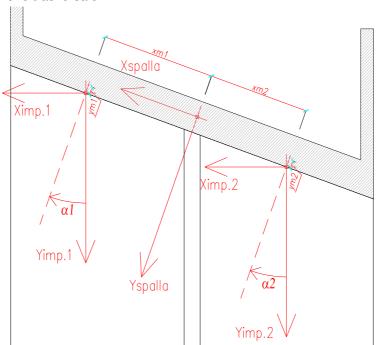
 $V_{Ed} = 22 \text{ kN}$

Caratteristic	che geometriche pia	<u>stra</u>			
H=	295	mm	Altezza pias	tra	
B=	180	mm	Larghezza p		
Caratteristic	sha hullani				
Carallerislic	are building				
d=	16	mm	Diametro bu	lloni	
classe	8,8				
A _{res} =	157	mm ²	Area resiste	nte	
γ _{M2} =	1,25				
riga	n.bulloni	y _i [mm]	A [mm ²]	S _{b,x} [mm ³]	J _{b,x} [mm ⁴]
1	2	265	314	69186,52	15244504
2	2	215	314	53486,52	9110852,4
3	2	165	314	37786,52	4547200,5
4	2	100	314	17376,52	961603,15
5	2	50	314	1676,518	8951,3174

N. ELABORATTO	REV.	FOGLIO
B.15	1	35 di 68

<u>Sollecitazion</u>	<u>i massime</u>						
N _{sd} =	0	kN	Azione assia	ale totale			
M _{sd} =	15	kNm	Massimo momento flettente esterno				
σ _{max} =				sione di traz		oni	
F _{t.Sd} =	14,73		Massima sol	lecitazione d	i trazione su	l bullone	
F _{v.Sd} =	2,20						ne per piano di tag
Verifica a tra	zione						
				TASSO SFF	RUTTAMENT	o	
_a resistenza	a a trazione di un b	ullone è pa	ria:				
F _{t,Rd} =	90,43	kN		0,163		VERIFICA	SODDISFATTA
Verifica a tac	<u>glio</u>						
La resistenza	a a taglio di un bull		no di taglio è	pari a :			
$F_{v,Rd}=$	60,29	kN		0,036		VERIFICA	SODDISFATTA
Verifica a tad	glio e trazione						
La verifica a	taglio e trazione è	soddisfatta	quando:				
	$\frac{F_{v.8d}}{F_{v.Rd}} + \frac{F_{t.8d}}{1.4 \cdot F_{t}}$						
0,036492	+	0,116378	=	0,153		VERIFICA	SODDISFATTA
<u>Verificaflessi</u>	one locale flangia						
F	14,73	kN	Trazione sul	bullone			
е	40,00						
beff	130,00						
t	15,00						
Wel	4875						
M	0,58936	kNm					
		MPa		fyk/1,05			SODDISFATTA

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	36 di 68


9 SPALLA

Vengono riportate nel seguito le calcolazioni relative alle sottostrutture di spalla. Viene calcolata la sola spalla che presenta le sollecitazioni più gravose, applicando i risultati ad entrambe.

9.1 ANALISI DEI CARICHI DA IMPALCATO

9.1.1 Convenzioni e sistema di riferimento

I carichi, riportati nei precedenti capitoli, ottenuti dall'analisi dell'impalcato saranno riportati ad un sistema di riferimento con origine nel baricentro dell'elevazione spalla, a quota intradosso travi, asse y in direzione longitudinale ed asse x in direzione trasversale.

9.1.2 Azioni da impalcato

trave 1 (nodo 1)

RIEPILOGO AZIONI SULLA SPALLA DA IMPALCATO APPLICATE NEL SISTEMA DI RIFERIMENTO DELL'IMPALCATO

CARICHI & AZIONI	Fx	Fy	Fz	Mx	My	Mz
IMPALCATO	kN	kN	kN	kNm	kNm	kNm
Permanenti	0,0	0,0	71,0	0,0	0,0	0,0
Folla compatta	0,0	0,0	78,0	0,0	0,0	0,0
Spinta parapetto	0,0	0,0	9,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
Frenamento (Disp.1)	0,0	0,0	0,0	0,0	0,0	0,0
Neve	0,0	0,0	23,0	0,0	0,0	0,0
Vento 1	0,0	0,0	-11,0	0,0	0,0	0,0
Vento 2	0,0	0,0	-6,0	0,0	0,0	0,0

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	37 di 68

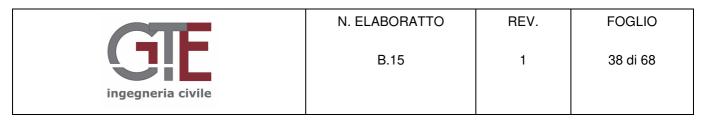
Parassite vincoli	0,0	0,0	0,0	0,0	0,0	0,0
Sism. (dir. x)	0,0	0,0	-22,0	0,0	0,0	0,0
Sism. (dir. y)	0,0	0,0	2,0	0,0	0,0	0,0
Sism. (verticali)	0,0	0,0	0,0	0,0	0,0	0,0

Coordinate dellla trave nel sistema centrato sulla spalla (in genere corrispondente dell'asse appoggi a quota estradosso pulvino):

 $x_m = -1,35$ m $y_m = 0,15$ m $z_m = 0,10$ m

 $\alpha = 0$ ° inclinazione asse impalcato rispetto la normale al paramento frontale cos $\alpha = 1,00$ α positivo se l'asse impalcato ruota come in figura

 $sen \alpha = 0.00$


RIEPILOGO AZIONI SULLA SPALLA DA IMPALCATO APPLICATE NEL SISTEMA DI RIFERIMENTO DELLA SPALLA

CARICHI & AZIONI	Fx	Fy	Fz	Mx	My	Mz
IMPALCATO	kΝ	kΝ	kN	kNm	kNm	kNm
Permanenti	0,0	0,0	71,0	10,7	95,9	0,0
Folla compatta	0,0	0,0	78,0	11,7	105,3	0,0
Spinta parapetto	0,0	0,0	9,0	1,4	12,2	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
Frenamento (Disp.1)	0,0	0,0	0,0	0,0	0,0	0,0
Neve	0,0	0,0	23,0	3,5	31,1	0,0
Vento 1	0,0	0,0	-11,0	-1,7	-14,9	0,0
Vento 2	0,0	0,0	-6,0	-0,9	-8,1	0,0
Parassite vincoli	0,0	0,0	0,0	0,0	0,0	0,0
Sism. (dir. x)	0,0	0,0	-22,0	-3,3	-29,7	0,0
Sism. (dir. y)	0,0	0,0	2,0	0,3	2,7	0,0
Sism. (verticali)	0,0	0,0	0,0	0,0	0,0	0,0

trave 2 (nodo 10)

RIEPILOGO AZIONI SULLA SPALLA DA IMPALCATO APPLICATE NEL SISTEMA DI RIFERIMENTO DELL'IMPALCATO

CARICHI & AZIONI	Fx	Fy	Fz	Mx	Му	Mz
IMPALCATO	kN	kN	kN	kNm	kNm	kNm
Permanenti	0,0	0,0	71,0	0,0	0,0	0,0
Folla compatta	0,0	0,0	78,0	0,0	0,0	0,0
Spinta parapetto	-16,0	0,0	9,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
Frenamento (Disp.1)	0,0	0,0	0,0	0,0	0,0	0,0
Neve	0,0	0,0	23,0	0,0	0,0	0,0
Vento 1	-21,0	0,0	23,0	0,0	0,0	0,0
Vento 2	-21,0	0,0	-11,0	0,0	0,0	0,0
Parassite vincoli	0,0	0,0	0,0	0,0	0,0	0,0
Sism. (dir. x)	-80,0	0,0	22,0	0,0	0,0	0,0
Sism. (dir. y)	9,0	-161,0	-3,0	0,0	0,0	0,0

Sism. (verticali) 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Coordinate dell'impalcato nel sistema centrato sulla spalla:

 $x_m = 1,35$ m $y_m = 0,15$ m $z_m = 0,10$ m

 α = 0 ° inclinazione asse impalcato rispetto la normale al paramento frontale

 $\cos \alpha = 1,00$ α positivo se l'asse impalcato ruota come in figura

sen $\alpha = 0.00$

RIEPILOGO AZIONI SULLA SPALLA DA IMPALCATO APPLICATE NEL SISTEMA DI RIFERIMENTO DELLA SPALLA

CARICHI & AZIONI	Fx	Fy	Fz	Mx	Му	Mz
IMPALCATO	kN	kN	kN	kNm	kNm	kNm
Permanenti	0,0	0,0	71,0	10,7	-95,9	0,0
Folla compatta	0,0	0,0	78,0	11,7	-105,3	0,0
Spinta parapetto	-16,0	0,0	9,0	1,4	-13,8	2,4
-	0,0	0,0	0,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
Frenamento (Disp.1)	0,0	0,0	0,0	0,0	0,0	0,0
Neve	0,0	0,0	23,0	3,5	-31,1	0,0
Vento 1	-21,0	0,0	23,0	3,5	-33,2	3,2
Vento 2	-21,0	0,0	-11,0	-1,7	12,8	3,2
Parassite vincoli	0,0	0,0	0,0	0,0	0,0	0,0
Sism. (dir. x)	-80,0	0,0	22,0	3,3	-37,7	12,0
Sism. (dir. y)	9,0	-161,0	-3,0	15,7	5,0	-218,7
Sism. (verticali)	0,0	0,0	0,0	0,0	0,0	0,0

9.1.3 Azioni da impalcato nei sisitemi di riferimentoi spalla

AZIONI GLOBALI DA IMPALCATI SULLA SPALLA APPLICATE NEL SISTEMA DI RIFERIMENTO DELLA SPALLA

CARICHI & AZIONI	Fx	Fy	Fz	Mx	Му	Mz
IMPALCATO	kN	kN	kN	kNm	kNm	kNm
Permanenti	0,0	0,0	142,0	21,3	0,0	0,0
Folla compatta	0,0	0,0	156,0	23,4	0,0	0,0
Spinta parapetto	-16,0	0,0	18,0	2,7	-1,6	2,4
-	0,0	0,0	0,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
Frenamento (Disp.1)	0,0	0,0	0,0	0,0	0,0	0,0
Neve	0,0	0,0	46,0	6,9	0,0	0,0
Vento 1	-21,0	0,0	12,0	1,8	-48,0	3,2
Vento 2	-21,0	0,0	-17,0	-2,6	4,7	3,2
Parassite vincoli	0,0	0,0	0,0	0,0	0,0	0,0
Sism. (dir. x)	-80,0	0,0	0,0	0,0	-67,4	12,0
Sism. (dir. y)	9,0	-161,0	-1,0	16,0	7,7	-218,7
Sism. (verticali)	0,0	0,0	0,0	0,0	0,0	0,0

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	39 di 68

Si trasportano ora le forze nel sistema di riferimento del paramento frontale (spiccato muro - baricentro paramento).

Coordinate del sistema di riferimento della spalla rispetto l'origine del sistema di riferimento a spiccato elevazione:

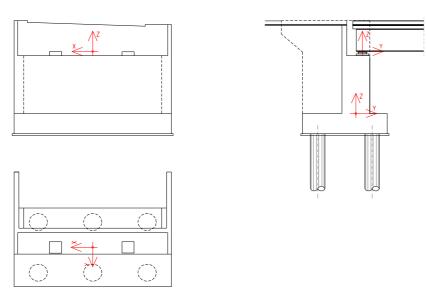
 $x_m = 0,00 m$ $y_m = 0,00 m$ $z_m = 3,65 m$

CARICHI & AZIONI	Fx	Fy	Fz	Mx	Му	Mz
IMPALCATO	kN	kN	kN	kNm	kNm	kNm
Permanenti	0,0	0,0	142,0	21,3	0,0	0,0
Folla compatta	0,0	0,0	156,0	23,4	0,0	0,0
Spinta parapetto	-16,0	0,0	18,0	2,7	-60,0	2,4
-[0,0	0,0	0,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
Frenamento (Disp.1)	0,0	0,0	0,0	0,0	0,0	0,0
Neve	0,0	0,0	46,0	6,9	0,0	0,0
Vento 1	-21,0	0,0	12,0	1,8	-124,7	3,2
Vento 2	-21,0	0,0	-17,0	-2,6	-72,0	3,2
Parassite vincoli	0,0	0,0	0,0	0,0	0,0	0,0
Sism. (dir. x)	-80,0	0,0	0,0	0,0	-359,4	12,0
Sism. (dir. y)	9,0	-161,0	-1,0	603,6	40,5	-218,7
Sism. (verticali)	0,0	0,0	0,0	0,0	0,0	0,0

AZIONI SULLA SPALLA DA IMPALCATO - SISTEMA DI RIFERIMENTO BARICENTRO PALI

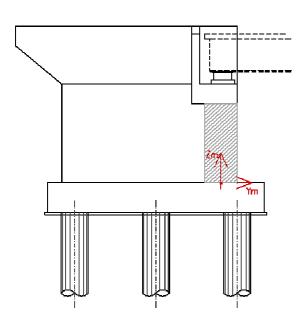
Si trasportano ora le forze nel sistema di riferimento della fondazione (spiccato pali - baricentro pali).

Coordinate del sistema di riferimento della spalla rispetto l'origine del sistema di riferimento a spiccato fondazioni:


 $x_m = 0,00 m$ $y_m = 0,30 m$ $z_m = 4,15 m$

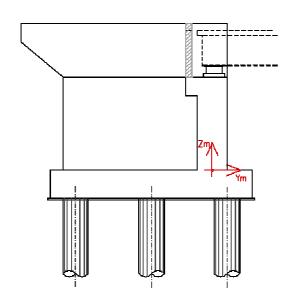
CARICHI & AZIONI	Fx	Fy	Fz	Mx	My	Mz
IMPALCATO	kN	kN	kN	kNm	kNm	kNm
Permanenti	0,0	0,0	142,0	63,9	0,0	0,0
Folla compatta	0,0	0,0	156,0	70,2	0,0	0,0
Spinta parapetto	-16,0	0,0	18,0	8,1	-68,0	7,2
-	0,0	0,0	0,0	0,0	0,0	0,0
-	0,0	0,0	0,0	0,0	0,0	0,0
Frenamento (Disp.1)	0,0	0,0	0,0	0,0	0,0	0,0
Neve	0,0	0,0	46,0	20,7	0,0	0,0
Vento 1	-21,0	0,0	12,0	5,4	-135,2	9,5
Vento 2	-21,0	0,0	-17,0	-7,7	-82,5	9,5
Parassite vincoli	0,0	0,0	0,0	0,0	0,0	0,0
Sism. (dir. x)	-80,0	0,0	0,0	0,0	-399,4	36,0
Sism. (dir. y)	9,0	-161,0	-1,0	683,8	45,0	-221,4
Sism. (verticali)	0,0	0,0	0,0	0,0	0,0	0,0

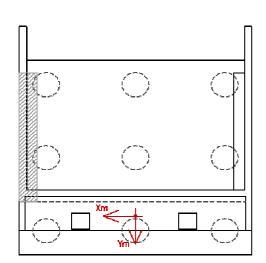
	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	40 di 68

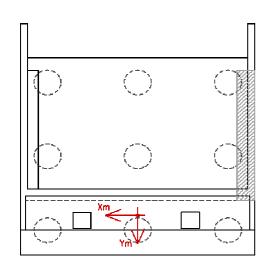

9.2 ANALISI DEI CARICHI SPALLA

9.2.1 Sistema di riferimento

9.2.2 Carichi permanenti


Il sistema di riferimento per i calcoli dei pesi viene preso con versi identici a quelli mostrati nelle figure precedenti mentre l'origine è a quota spiccato elevazione. Planimetricamente il centro del sistema di riferimento è nel baricentro planimetrico della sezione di paramento frontale.




Muro frontale:

Peso Specifico:	25,00	kN/m³	
Altezza muro :	3,65	m	
Lunghezza muro :	3,10	m	
Spessore muro:	0,800	m	
	\mathbf{x}_{m}	y m	\mathbf{Z}_{m}
	m	m	m
	0,00	0,00	1,83
Peso	S_{xm}	S_{ym}	S_{zm}
	kNm/	kNm/	
kN	m	m	kNm/m
226,30	0	0	413

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	41 di 68

Paraghiaia frontale:

Peso Specifico: 25,00 kN/m³
Altezza paraghiaia: 0,40 m
Lunghezza paraghiaia: 3,10 m
Spessore paraghiaia: 0,20 m

		•	
	m	m	m
	0,00	-0,30	3,85
Peso	S _{xm} kNm/	S _{ym} kNm/	S_{zm}
kN	m	m	kNm/m

0

уm

-2

 $\mathbf{Z}_{\mathbf{m}}$

24

23

 \mathbf{X}_{m}

Muro laterale x(+):

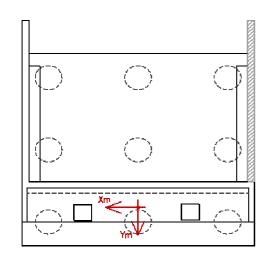
6,20

Peso Specifico: 25,00 kN/m³
Altezza muro: 1,80 m
Lunghezza muro: 1,40 m
Spessore muro: 0,40 m

	\mathbf{x}_{m}	y m	Z_{m}
	m	m	m
	1,35	-1,10	0,90
Peso	S_{xm}	S_{ym}	S_{zm}
	kNm/	kNm/	
kN	m	m	kNm/m

34

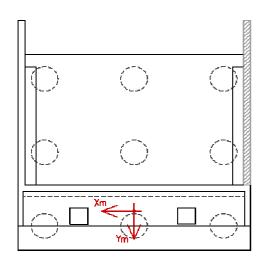
-28


Muro laterale x(-):

25,20

Peso Specifico: 25,00 kN/m³
Altezza muro: 1,80 m
Lunghezza muro: 1,40 m
Spessore muro: 0,40 m

	\mathbf{x}_{m}	y _m	\mathbf{z}_{m}
	m	m	m
	-1,35	-1,10	0,90
_			
Peso	S _{xm}	S _{ym}	S_{zm}
	kNm/	kNm/	
kN	m	m	kNm/m
25,20	-34	-28	23

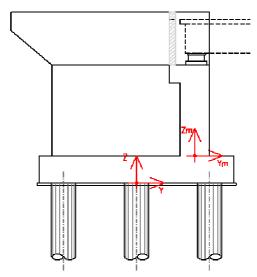

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	42 di 68

Paraghiaia lat. x(+):

Peso Specifico: 25,00 kN/m Altezza: 2,23 m Lunghezza: 1,40 m Spessore paraghiaia: 0,30 m $\boldsymbol{x}_{\boldsymbol{m}}$ \boldsymbol{y}_{m} \mathbf{Z}_{m} m m m 1,35 -1,10 2,92 Peso $S_{\text{xm}} \\$ S_{ym} S_{zm} kNm/ kNm/ kNm/m kΝ m m 35,00 47 -39 102

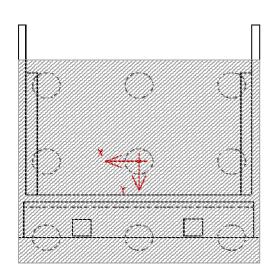
Paraghiaia lat. x(-) :

Peso Specifico: 25,00 kN/m³ Altezza paraghiaia: 2,23 m Lungh. paraghiaia: 1,40 m Spessore paraghiaia: 0,30 m $\boldsymbol{x}_{\boldsymbol{m}}$ \boldsymbol{y}_{m} $\mathbf{Z}_{\mathbf{m}}$ m m m -1,35 -1,10 2,92


Riepilogo elementi di elevazione

	W	X _m	y m	Z _m	S_{xm}	S_{ym}	S_{zm}
_	kN	m	m	m	kNm/m	kNm/m	kNm/m
Muro frontale :	226	0,00	0,00	1,83	0	0	413
Pulvino frontale :	0	0,00	0,00	0,00	0	0	0
Paraghiaia frontale :	6	0,00	-0,30	3,85	0	-2	24
Muro laterale x(+):	25	1,35	-1,10	0,90	34	-28	23
Muro laterale x(-):	25	-1,35	-1,10	0,90	-34	-28	23
Paraghiaia lat. x(+):	35	1,35	-1,10	2,92	47	-39	102
Paraghiaia lat. x(-):	23	-1,35	-1,10	2,92	-32	-26	68
Paragniaia iat. x(-):	23	-1,35	-1,10	2,92	-32	-20	08

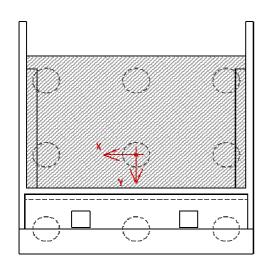
Elementi di elevazione : 341 0,0 -0,4 1,91 16 -122 653


	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	43 di 68

Traslazione nel sistema di riferimento principale quota testa palo

Si considera un sistema di riferimento centrato nel baricentro della testa dei pali di fondazione

	W	\mathbf{x}_{p}	У р	Zp	S_{xp}	S_yp	S_{zp}	
	kN	m	m	m	KNm/m	kNm/m	kNm/m	
Flementi verticali ·	341	0.05	-0.06	2.41	16	-19	823	

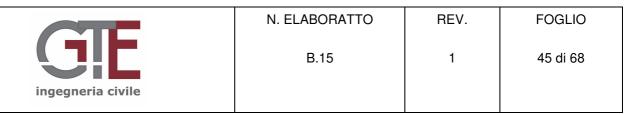


<u>Platea fondazione :</u>

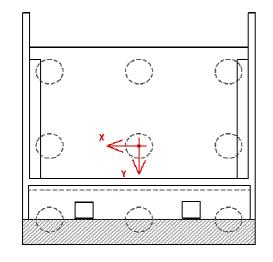
Peso Specifico:	25,00	kN/m³	
Altezza platea :	0,50	m	
Lunghezza platea :	3,00	m	
Larghezza platea :	3,50	m	
	X_p	y p	Z_p
	m	m	m
	0,00	0,00	0,25
Peso	S_{xp}	S_yp	S_zp
kN	kNm/m	kNm/m	kNm/m
131,25	0	0	33

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	44 di 68

Terreno su platea:


Peso Specifico :	20,00	kN/m³	
Altezza terreno:	4,03	m	
Lunghezza :	1,40	m	
Larghezza :	2,70	m	
	V	V	7
	Χp	y p	Zp
	m	m	m
	0,00	-0,800	2,52
Peso	S_xp	S_yp	S_zp
kN	kNm/m	kNm/m	kNm/m
304,67	0	-244	766

Terreno su platea laterale x(+) :


Peso Specifico :	20,00	kN/m³	
Altezza terreno:	1,50	m	
Lunghezza :	2,20	m	
Larghezza:	0,20	m	
	\mathbf{x}_{p}	У р	Zp
	m	m	m
	1,65	-0,40	1,25
Peso	S_{xp}	S_yp	S_zp
kN	kNm/m	kNm/m	kNm/m
13,20	22	-5	17

Terreno su platea laterale x(-) :

Peso Specifico :	20,00	kN/m³	
Altezza terreno:	1,50	m	
Lunghezza :	2,20	m	
Larghezza:	0,20	m	
	Χp	У р	Zp
	m	m	m
	-1,65	-0,40	1,25
Peso	S_xp	S_yp	S_zp
kN	kNm/m	kNm/m	kNm/m
13,20	-22	-5	17

Terreno su platea anteriore:

Peso Specifico: 20,00 kN/m³ Altezza terreno: 1,00 m Lunghezza: 0,80 m Larghezza: 3,50 m \mathbf{X}_{p} \mathbf{z}_{p} **у**р m m m 0,00 1,10 1,00 Peso S_{xp} S_{yp} $S_{zp} \\$ kΝ kNm/m kNm/m kNm/m 56,00 0 62 56

Riepilogo elementi di fondazione

	W	Χp	y p	Zp	S_{xp}	S_{yp}	S_{zp}
	kN	mm	m	m	kNm/m	kNm/m	kNm/m
Platea fondazione:	131	0,00	0,00	0,25	0	0	33
Terreno su platea :	305	0,00	-0,80	2,52	0	-244	766
Terreno su platea laterale x(+) :	13	1,65	-0,40	1,25	22	-5	17
Terreno su platea laterale x(-) :	13	-1,65	-0,40	1,25	-22	-5	17
Terreno su platea anteriore :	56	0,00	1,10	1,00	0	62	56

5 - 1 - 8 El. di fondazione : 18 ,0 0,4 ,7 0 193 88

PESO DELLA

SPALLA

	W	хр	ур	zp	Sxp	Syp	Szp
	kN	m	m	m	KNm/m	kNm/m	kNm/m
Elementi verticali :	341	0,05	-0,06	2,41	16	-19	823
El. di fondazione :	518	0,00	-0,37	1,71	0	-193	888
SPALLA TOTALE	860	0,02	-0,25	1,99	16	-212	1.711

PESO DELLA SPALLA SENZA PLATEA

W	\mathbf{x}_{p}	У р	\mathbf{z}_{p}	S_{xp}	S_{yp}	S_{zp}	
kN	m	m	m	KNm/m	kNm/m	kNm/m	

			N. ELAB	ORATTO	REV.	F	OGLIO
			В.	15	1	4	6 di 68
ingegneria civ	ile						
L						l .	
Elementi verticali :	341	0,05	-0,06	2,41	16	-19	823
Terreno su platea :	305	0,00	-0,80	2,52	0	-244	766
Terreno su platea laterale x(+):	13	1,65	-0,40	1,25	22	-5	17
Terreno su platea laterale x(-) :	13	-1,65	-0,40	1,25	-22	-5	17
Terreno su platea anteriore:	56	0,00	1,10	1,00	0	62	56
SPALLA NO PLATEA	728	0,02	-0,29	2,30	16	-212	1.678

9.2.3 Spinte globali M1

PARAMETRI CARATTERISTICI DEL TERRENO

ŗ	X_{K}	=			γм	X_D		
φ _κ =	35°	0		фр =	1,00	35,00°	= ,001 ra	ad
$\delta_{k} =$	0°	0		$\delta_D =$	1,00	0,00°	= ,000 ra	ad
c' =	-	MPa	M1	C' D =	1,00	-	MPa	
Cu =	-	MPa	\rightarrow	Cu =	1,00	-	MPa	
qu =	-	MPa		$q_{u,D} =$	1,00	-	MPa	
$\gamma_t =$	20,00	kN/m³		γt,D =	1,00	20,00	kN/m³	
$\gamma'_t =$	10,00	kN/m³		$\gamma'_{t,D} =$	1,00	10,00	kN/m^3	
β = i =	0,00° 0,00°	= ,000 rad = ,000 rad		ngolo di inclina: nclinazione della	•	•		
<u>PARAME</u>	TRI DELLA FALI	<u>DA</u>	=	-			-	-
Presenza	della falda =	No		Quota Q	da piano sp	iccato fondaz	ione = -	m
<u>PARAME</u>	TRI SISMICI CAI	<u>RATTERISTICI</u>	-	-			-	-

Per il calcolo delle azioni sismiche, si fa riferimento alle "Norme tecniche per le costruzioni", a "Allegato A alle Norme tecniche per le costruzioni : Pericolosità sismica" ed a "Allegato B alle Norme tecniche per le costruzioni : Tabelle dei parametri che definiscono l'azione sismica"

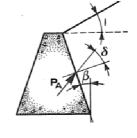
Dalla Tabella 1 dell'allegato B per un periodo di ritorno di 475 anni si ha:

$$a_9 = 0.135$$
 9 $F_0 = 2.440$ $T_{C}^* = 0.279$ s

Si utilizza il metodo dell'analisi pseudostatica, in cui l'azione sismica è rappresentata da una forza statica

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	47 di 68

equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico. Nelle verifiche allo stato limite ultimo si utilizzano i seguenti valori:


Categ	oria di suolo =	С		
Categoria	a topografica =	T1		
	S _S =	1,50	coeff	iciente di amplificazione stratigrafica per sisma orizzontale
	$S_{S,v} =$	1,00	coeff	iciente di amplificazione stratigrafica per sisma verticale
	$S_T =$	1,00	coeff	iciente di amplificazione topografica
S =	$S_S \times S_T =$	1,50	coeffi orizzon	iciente di amplificazione globale del terreno per sisma Itale
Sv =	$S_{S,v} \times S_T =$	1,00	coeff	iciente di amplificazione globale del terreno per sisma verticale
	$\beta_{m} =$	1	coeff	iciente di riduzione dell'accelerazione
a _{max} =	S x a _g =	1,987	m/s ²	accelerazione orizzontale max
$a_{\text{max},v} =$	$Sv x a_g =$	1,324	m/s²	accelerazione verticale max
$k_h =$	β m a _{max} /g =		0,203	Coefficiente sismico orizzontale
$k_v =$	± 0.5 k _h =		0,101	Coefficiente sismico verticale

SPINTA STATICA DEL TERRENO - CONDIZIONE ATTIVE

Si determina la spinta statica del terreno sulla spalla.

Si utilizza il procedimento indicato da Coulomb per condizioni di spinta attiva

$$K_a = \frac{\cos^2(\phi' - \beta)}{\cos^2\beta \cdot \cos(\delta + \beta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi') \cdot \sin(\phi' - i)}{\cos(\delta + \beta) \cdot \cos(i - \beta)}}\right]^2}$$

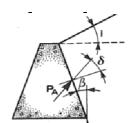
Ka =	0,27		
H _{spalla} = B _{spalla} =	4,55 3,10	m m	Comprensiva dell'altezza del plinto di fondazione Comprensiva della larghezza dei muri d'ala
Sterr,long = Sterre,y = Sterre,z =	173,9 173,9 0,0	kN kN kN	Modulo della forza delle terre Componente orizzontale Componente verticale
bterre,ez = bterre,ey = bterre,ex = Mterre,x M1 =	1,52 1,5 0,000 -263,8	m m m kNm	braccio della componente orizzontale - Sistema baricentro pali braccio della componente verticale - Sistema baricentro pali eccentricità orizzontale della spinta rispetto al baricentro della palificata

S _{terre,y} =	174	kN	b _{terre,ez M1} =	1,5	m	$M_{terre,Sy,x} =$	-263,8	kNm
S _{terre,z} =	0	kN	b _{terre,ey M1} =	1,5	m	$M_{terre,Sz,x} =$	0,0	kNm
			b _{terre,ex} M1 =	0,0	m	M _{terre,Sy,z} =	0,0	kNm

Riepilogo delle sollecitazioni a quota spiccato fondazione

Fx	Fv	Fz	Mx	My	Mz
kN	kN	kN	kNm	kNm	kNm

N. ELABORATTO	REV.	FOGLIO
B.15	1	48 di 68


0,0 173,9	0,0	-263,8	0,0	0,0
-----------	-----	--------	-----	-----

SPINTA STATICA DI UN SOVRACCARICO - CONDIZIONE ATTIVE

Si determina la spinta statica del terreno sulla spalla.

Si utilizza il procedimento indicato da Coulomb per condizioni di spinta attiva

$$K_a = \frac{\cos^2(\phi' - \beta)}{\cos^2\beta \cdot \cos(\delta + \beta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi') \cdot \sin(\phi' - i)}{\cos(\delta + \beta) \cdot \cos(i - \beta)}}\right]^2}$$

Ka =	0,27	Qk = 20,00 kPa $Qk,sism = 4,00 kPa$	carico presente in condizioni statiche carico presente in condizioni sismiche
		Comprensiva dell'altezza d	el plinto di

H _{spalla} =	4,55	m	fondazione
B _{spalla} =	3,10	m	Comprensiva della larghezza dei muri d'ala
S _{k,long} =	76,4	kN	Modulo della forza delle terre
$S_{k,y} =$	76,4	kN	Componente orizzontale
$S_{k,z} =$	0,0	kN	Componente verticale
$b_{k,ez} =$	2,3	m	braccio della componente orizzontale - Sistema baricentro pali
$b_{k,ey} =$	2,3	m	braccio della componente verticale - Sistema baricentro pali
$b_{k,ex} =$	0,000	m	eccentricità orizzontale della spinta rispetto al baricentro della palificata
Mk v =	-173 9	kNm	

S _{k,y} =	76	kN	b _{k,ez} =	2,3	m	$M_{k,Sy,x} =$	-173,9	kNm
S _{k,z} =	0	kN	b _{k,ey} =	2,3	m	$M_{k,Sz,x} =$	0,0	kNm
			b _{k,ex} =	0,0	m	$M_{k,Sv,z} =$	0,0	kNm

Riepilogo delle sollecitazioni a quota spiccato fondazione

	Fx kN	Fy kN	Fz kN	Mx kNm	My kNm	Mz kNm
Qk	0,0	76,4	0,0	-173,9	0,0	0,0
Qk,sism	0,0	15,3	0,0	-34,8	0,0	0,0

<u>SPINTA STATICA DEL TERRENO - CONDIZIONE A RIPOSO</u>

Si determina la spinta statica del terreno sulla spalla.

Si utilizza il procedimento indicato da Jacky per condizioni di spinta a riposo

La relazione è valida per sabbie e per argille Normal Consolidate

$K_{0(NC)} = 1$	l -sen(φ) =	0,43	
$H_{spalla} = \\ B_{spalla} = \\$	4,55	m	Comprensiva dell'altezza del plinto di fondazione
	3,10	m	Comprensiva della larghezza dei muri d'ala
Sterr,long = Sterre,y = Sterre,z = bterre,ez = bterre,ey =	273,7	kN	Modulo della forza delle terre
	273,7	kN	Componente orizzontale
	0,0	kN	Componente verticale
	1,52	m	braccio della componente orizzontale - Sistema baricentro pali
	1,517	m	braccio della componente verticale - Sistema baricentro pali

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	49 di 68

 $\begin{array}{lll} b_{terre,exy} = & 0,000 & m \\ M_{terre,x \; M1} = & -415,1 & kNm \end{array}$

eccentricità orizzontale della spinta rispetto al baricentro della palificata

S _{terre,y} =	274	kN	b _{terre,ez M1} =	1,5	m	$M_{terre,Sy,x} =$	-415,1	kNm
S _{terre,z} =	0	kN	bterre,ey M1 =	1,5	m	$M_{terre,Sz,x} =$	0,0	kNm
bterre,ex M1 =			0,0	m	M _{terre,Sy,z} =	0,0	kNm	

Riepilogo delle sollecitazioni a quota spiccato fondazione

Fx	Fy	Fz	Mx	My	Mz
kN	kN	kN	kNm	kNm	kNm
0,0	273,7	0,0	-415,1	0,0	0,0

SPINTA STATICA DI UN SOVRACCARICO - CONDIZIONE A RIPOSO

Si determina la spinta statica del terreno sulla spalla.

Si utilizza il procedimento indicato da Jacky per condizioni di spinta a riposo

La relazione è valida per sabbie e per argille Normal Consolidate

$K_{0(NC)} = 1$	$-sen(\phi) =$	0,43	Qk = 20,00 kPa carico presente in condizioni statiche
			Qk,sism = 4,00 kPa carico presente in condizioni sismiche
ц " Г	4,55	7 m	Comprensive dell'eltezza del plinte di fondezione
H _{spalla} =		m	Comprensiva dell'altezza del plinto di fondazione
B _{spalla} =	3,10	m	Comprensiva della larghezza dei muri d'ala
S _{k,long} =	120,3	- kN	Modulo della forza delle terre
$S_{k,y} =$	120,3	kN	Componente orizzontale
=	•		•
$S_{k,z} =$	0,0	kN	Componente verticale
$b_{k,ez} =$	2,3	m	braccio della componente orizzontale - Sistema baricentro pali
$b_{k,ey} =$	1,5	m	braccio della componente verticale - Sistema baricentro pali
$b_{k,ex} =$	0,0	m	eccentricità orizzontale della spinta rispetto al baricentro della palificata
$M_{k,x} =$	-273,7	kNm	

Sk,y =	120	kN	b _{k,ez} =	2,3	m	$M_{k,Sy,x} =$	-273,7	kNm
$S_{k,z} =$	0	kN	b _{k,ey} =	1,5	m	$M_{k,Sz,x} =$	0,0	kNm
			b _{k,ex} =	0,0	m	$M_{k,Sy,z} =$	0,0	kNm

Riepilogo delle sollecitazioni a quota spiccato fondazione

	Fx kN	Fy kN	Fz kN	Mx kNm	My kNm	Mz kNm
Qk	0,0	120,3	0,0	-273,7	0,0	0,0
Qk,sism	0,0	24,1	0,0	-54,7	0,0	0,0

FORZE DI INERZIA DELLA SPALLA

Forze d'inerzia sismiche della spalla (platea, muri e terreno di riempimento) applicate nel baricentro dei pesi propri precedentemente determinato - *Sistema riferimento baricentro pali.*

Come previsto al p.to 7.9.5.6 del D.M. 14/01/2008, l'inerzia delle spalle si ottiene applicando alla massa un accelerazione pari a a_gS .

$F_{x,y} =$	174	kN	Comprensivo della massa della platea
$F_z =$	116	kN	Comprensivo della massa della platea

N. ELABORATTO	REV.	FOGLIO
B.15	1	50 di 68

	Fx kN	Fy kN	Fz kN	Mx kNm	My kNm	Mz kNm
Inerzia lungo x =	174,1	0,0	0,0	0,0	346,5	42,9
Inerzia lungo y =	0,0	174,1	0,0	-346,5	0,0	3,2
Inerzia lungo z =	0,0	0,0	-116,1	28,6	2,1	0,0

$F_{x,y} =$	147	kN	Esclusa la massa della platea
$F_z =$	98	kN	Esclusa la massa della platea

	Fx	Fy	Fz	Mx	Му	Mz
	kN	kN	kN	kNm	kNm	kNm
Inerzia lungo x =	147,5	0,0	0,0	0,0	339,9	42,9
Inerzia lungo y =	0,0	147,5	0,0	-339,9	0,0	3,2
Inerzia lungo z =	0,0	0,0	-98,3	28,6	2,1	0,0

SPINTA SISMICA DEL TERRENO -MONONOBE OKABE (CONDIZIONI ATTIVE)

Permeabilità del terreno? non influente

> $E_d = 1/2 \gamma (1 \pm k_v) K H^2 + E_{ws} + E_{wd}$ [kN/m]

In cui il coefficiente di spinta attiva k viene valutato con la formula di Mononobe-Okabe

Per stati attivi:

se: $\beta \le \phi'_d - \theta$

in questo caso:

$$\mathcal{K} = \frac{\sin^2(\psi + \phi'_d - \theta)}{\cos\theta \sin^2\psi \sin(\psi - \theta - \delta_d) \left[1 + \sqrt{\frac{\sin(\phi'_d + \delta_d)\sin(\phi'_d - \beta - \theta)}{\sin(\psi - \theta - \delta_d)\sin(\psi + \beta)}}\right]^2} \qquad \psi = 1,571 \text{ rad}$$

$$\phi = 0,611 \text{ rad}$$

$$\delta = 0,000 \text{ rad}$$

$$\delta = 0,000 \text{ rad}$$

$$\beta = 0,000 \text{ rad}$$

$$H = 4,55 \qquad m$$

$$B = 3,10 \qquad m$$

$$Q = - \qquad m$$

terreno non contenente la falda

eno non contenente la falda adottato cond.1 cond.2
$$\tan \theta = k_h/(1\pm k_v)$$
 $\theta_1 = 0,2216 \text{ rad}$ $k_1 = 0,415$ 0,415 - $\theta_2 = 0,1819 \text{ rad}$ $k_2 = 0,384$ 0,384 -

terreno contenente la falda

$$\tan \theta = \frac{\gamma_s k_h}{(1 \pm k_v)} \qquad \qquad \theta_3 = \qquad - \qquad \qquad k_3 = \qquad - \qquad \qquad - \qquad \qquad \qquad \qquad - \qquad \qquad \qquad - \qquad$$

$E_{ws} =$	0,00 kN/m	(ipotesi iniziale di assenza di falda)
$E_{wd} =$	0,00 kN/m	(ipotesi iniziale di assenza di falda)
Ed long M1 =	87,50 kN/m	spinta in condizioni sismiche totale

Indicando con:

F_{d long} = spinta sismica totale delle terre longitudinale

Sa long = spinta statica in condizioni sismiche delle terre longitudinale

 $\Delta_{\text{Ed long}}$ = incremento di spinta dinamico delle terre longitudinale

si ha:

$$F_{d \ long} = \qquad 271,24 \qquad kN$$

$$K_a = \qquad 0,27$$

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	51 di 68

Sa long =	173,92	kN	Spinta statica in condizioni sismiche delle terre
Δ Fd long =	97,32	kN	Incremento di spinta dinamico delle sole terre
Δ Fdy $=$	97,32	kN	Incremento dinamico di spinta delle sole terre lungo y - Fy
Δ Fdz =	0,00	kN	Incremento dinamico di spinta delle sole terre lungo z - Fz
eFd,z =	2,28	m	= 1/2 Hmax punto applicazione forza rispetto al sistema di riferimento
$e_{Fd,y} =$	1,52	m	punto applicazione forza rispetto al sistema di riferimento
Δ Ewd long =	0,00	kN	Spinta idrodinamica della falda in condizioni sismiche
eEwd,z =	0,00	m	punto applicazione forza rispetto al sistema di riferimento
Δ Edy =	97,32	kN	Incremento dinamico di spinta lungo y - Fy
$\Delta \mathrm{Edz} =$	0,00	kN	Incremento dinamico di spinta lungo z - Fz
e ,z =	2,28	m	punto applicazione forza rispetto al sistema di riferimento
e, _y =	1,52	m	punto applicazione forza rispetto al sistema di riferimento

Spinta statica del terreno in condizioni sismiche - Sistema riferimento baricentro pali

 $e_{,x} = 0,00$ m punto applicazione forza rispetto al sistema di riferimento

	Fx	Fy	Fz	Mx	My	Mz
	kN	kN	kN	kNm	kNm	kNm
Statica lungo y =	0,0	173,9	0,0	-395,7	0,0	0,0
Statica lungo z =	0,0	0,0	0,0	0,0	0,0	0,0
Spinta statica globale =	0.0	173,9	0.0	-395,7	0,0	0.0

Incremento di spinta dinamica del terreno condizioni sismiche - Sistema riferimento baricentro pali

	Fx	Fy	Fz	Mx	My	Mz
	kN	kN	kN	kNm	kNm	kNm
Parte sismica lungo y =	0,0	97,3	0,0	-221,4	0,0	0,0
Parte sismica lungo z =	0,0	0,0	0,0	0,0	0,0	0,0
Parte sismica globale =	0,0	97,3	0,0	-221,4	0,0	0,0

SPINTA SISMICA DEL TERRENO - WOOD (CONDIZIONI A RIPOSO)

IPOTESI FONDAMENTALI: Assenza di falda, Attrito terra-muro nulla; muro impossibilitato a ruotare

$\Delta P_d = \gamma H^2 S a_g/g$	H =	4,55	m	B =	3,10	m
$\Delta I u = I I I \cup \Delta g / g$		1,00	111	_	0,10	

$\Delta P_d =$	260	kN	incremento di spinta sismico del terreno per strutture rigide
e,x =	-	m	punto di applicazione della risultante rispetto al sistema baricentro pali
$e_{,y} =$	-	m	punto di applicazione della risultante rispetto al sistema baricentro pali
e ,z =	2,28	m	punto di applicazione della risultante rispetto al sistema baricentro pali

	Fx	Fy	Fz	Mx	My	Mz
	kN	kN	kN	kNm	kNm	kNm
Parte sismica globale =	0,0	259,9	0,0	-591,3	0,0	0,0

RIEPILOGO DELLE SOLLECITAZIONI - SPICCATO PALI - SISTEMA BARICENTRO PALI

	_				
Ev	Ev	E-7	1//~	N/13/	N/1-2
r _x	ΓV	ΓZ	IVIX	iviy	IVIZ

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	52 di 68

	kN	kN	kN	kNm	kNm	kNm
statica K0	0,00	273,67	0,00	-415,06	0,00	0,00
sovraccarico K0	0,00	120,29	0,00	-273,67	0,00	0,00
inerzia sismica Fx	174,08	0,00	0,00	0,00	346,52	42,90
inerzia sismica Fy	0,00	174,08	0,00	-346,52	0,00	3,17
inerzia sismica Fz	0,00	0,00	-116,05	28,60	2,11	0,00
sismica M.O porzione statica	0,00	273,67	0,00	-415,06	0,00	0,00
sismica M.O porzione sismica	0,00	97,32	0,00	-221,41	0,00	0,00
sovraccarico su ciabatta 2b	0,00	0,00	-75,60	60,48	0,00	0,00
sovraccarico sismico K0	0,00	24,06	0,00	-54,73	0,00	0,00

Le medesime considerazioni vengono svolte per calcolare la spinta sul muro frontale e sui muri di risvolto.

Di tali analisi si riportano nel seguito solo le azioni complessive di riepilogo

9.2.4 Riepilogo azioni

AZIONI A TESTA PALI - SISTEMA DI RIFERIMENTO BARICENTRO PALI

CARICHI & AZIONI	Fx	Fy	Fz	Mx	Му	Mz
SPALLA	kN	kN	kN	kNm	kNm	kNm
Permanenti spalla	0,0	0,0	-859,6	211,9	15,6	0,0
statica K0 (M1)	0,0	273,7	0,0	-415,1	0,0	0,0
sovraccarico K0 (M1)	0,0	120,3	0,0	-273,7	0,0	0,0
inerzia sismica Fx (M1)	174,1	0,0	0,0	0,0	346,5	42,9
inerzia sismica Fy (M1)	0,0	174,1	0,0	-346,5	0,0	3,2
inerzia sismica Fz (M1)	0,0	0,0	-116,1	28,6	2,1	0,0
sismica M.O porzione statica (M1)	0,0	273,7	0,0	-415,1	0,0	0,0
sismica M.O porzione sismica (M1)	0,0	97,3	0,0	-221,4	0,0	0,0
sovraccarico su ciabatta 2b	0,0	0,0	-75,6	60,5	0,0	0,0
statica K0 (M2)	0,0	328,1	0,0	-497,7	0,0	0,0
sovraccarico K0 (M2)	0,0	144,2	0,0	-328,1	0,0	0,0
inerzia sismica Fx (M2)	174,1	0,0	0,0	0,0	346,5	42,9
inerzia sismica Fy (M2)	0,0	174,1	0,0	-346,5	0,0	3,2
inerzia sismica Fz (M2)	0,0	0,0	-116,1	28,6	2,1	0,0
sismica M.O porzione statica (M2)	0,0	220,4	0,0	-334,3	0,0	0,0
sismica M.O porzione sismica (M2)	0,0	113,2	0,0	-257,6	0,0	0,0
sovraccarico su ciabatta 2b	0,0	0,0	-75,6	60,5	0,0	0,0
sovraccarico sismico K0 (M1)	0,0	24,1	0,0	-54,7	0,0	0,0
sovraccarico sismico K0 (M2)	0,0	28,8	0,0	-65,6	0,0	0,0

AZIONI SUL PARAMENTO FRONTALE - SISTEMA BARICENTRO MURO FRONTALE

CARICHI & AZIONI	Fx	Fy	Fz	Mx	Му	Mz
SPALLA	kN	kN	kN	kNm	kNm	kNm
Permanenti spalla	0,0	0,0	-232,5	1,9	0,0	0,0
statica K0	0,0	279,8	0,0	-377,7	0,0	-139,9
sovraccarico K0	0,0	138,2	0,0	-279,8	0,0	-69,1
inerzia sismica Fx	47,1	0,0	0,0	0,0	88,5	0,4

B.15 1 53 di 68		N. ELABORATTO	REV.	FOGLIO
	ingegneria civile	B.15	1	53 di 68

inerzia sismica Fy	0,0	47,1	0,0	-88,5	0,0	0,0
inerzia sismica Fz	0,0	0,0	-31,4	0,3	0,0	0,0
sismica M.O porzione statica	0,0	279,8	0,0	-377,7	0,0	-139,9
sismica M.O porzione sismica	0,0	99,5	0,0	-201,5	0,0	-49,7
sovraccarico sismico K0	0,0	27,6	0,0	-56,0	0,0	-13,8

AZIONI SUL MURO DI RISVOLTO - SISTEMA BARICENTRO MURO RISVOLTO

CARICHI & AZIONI	Fx	Fy	Fz	Mx	Му	Mz
SPALLA	kN	kN	kN	kNm	kNm	kNm
Permanenti spalla	0,0	0,0	-60,2	0,0	0,00	0,0
statica K0	19,3	0,0	0,0	0,0	11,6	0,0
sovraccarico K0	21,5	0,0	0,0	0,0	19,3	0,0
inerzia sismica Fx	5,1	0,0	0,0	0,0	4,6	0,0
inerzia sismica Fy	0,0	5,1	0,0	-4,6	0,0	0,0
inerzia sismica Fz	0,0	0,0	-3,4	0,0	0,0	0,0
sismica M.O porzione statica	19,3	0,0	0,0	0,0	11,6	0,0
sismica M.O porzione sismica	6,9	0,0	0,0	0,0	6,2	0,0
sovraccarico sismico K0	4,3	0,0	0,0	0,0	3,9	0,0

9.3 COMBINAZIONE DEI CAIRCHI E DETERMINAZIONE SOLLECITAZIONI

Nella seguente tabella sono riportati i coefficienti di combinazioni per i principali condizioni elementari di carico di ponti.

		COEFFICIE	NTI DI COME	BINAZIONE	DELLE AZI	ONI									
CARICHI	EFFETTO	tipo	Coeff. γ	EQU 1	STR - A1	GEO - A2	SLE - RAR/ 4	LE - FREG	SLE - QP	SISMA 7	ALTRO 8	_ 9	Ψο 10	Ψ ₁	Ψ ₂ 12
Permanenti	Fav.	G1 fav.	γ _{G1}	0,9	1	1	1	1	1	1	0	1	-	-	-
	Sfav. Fav.	G1 sfav. G2 fav.	,	1,1 0	1,35 0	0	1	1	1	1 1	0	1 1	-	-	-
Permanenti non strutt.	Sfav.	G2 sfav.	γ _{G2}	1.5	1.5	1.3	1	1	1	1	0	1			-
Variabili da traffico (tandem)	Fav.	Q fav.	Yok	Ó	0	0	0	0	0	0	0	1	0,75	0,75	0
variabili da tramco (tandem)	Sfav.	Q sfav.	YQk	1,35	1,35	1,15	1	1	1	1	0	1	0,75	0,75	0
Variabili da traffico (distribuito)	Fav.	qd fav.	γ _{qk}	0	0	0	0	0	0	0	0	1	0,40	0,40	0
	Sfav.	qd sfav.	140	1,35	1,35	1,15	1	1	1	1	0		0,40	0,40	0
Variabili	Fav. Sfav.	Qi fav. Qi sfav.	Yαi	1.5	1.5	1.3	0	0	0	0	0	1	0,75 0,75	0,5 0.5	0,3
	Fav.	DP fav.		0.9	1,5	1,3	1	1	1	1	0	1	0,75	0,5	- 0,0
Distorsioni presollecitazioni	Sfav.	DP sfav.	γ_{ϵ^1}	1	1	1	1	1	1	1	0	1	-	-	-
Ritiro e viscosità	Fav.	RV fav.	.,	0	0	0	0	0	0	0	0	1	-	-	-
Hitiro e viscosita	Sfav.	RV sfav.	γ _{ε2}	1,2	1,2	1	1	1	1	1	0	1	-	-	-
Variazioni termiche	Fav.	T fav.	γ_{i3}	0	0	0	0	0	0	0	0		0,6	0,6	0,
	Sfav. Fav.	T sfav. RPV fav.	185	1,2 0	1,2	0	0	0	0	0	0	1 1	0,6	0,6	0,
Res. Passive Vincoli	Sfav.	RPV fav.	γ_{e^4}	1.5	1.5	1	1	1	1	1	0	1	-	-	-
	Fav.	QS fav.		0	0	0	0	0	0	0	0	1	0	0	0
Neve	Sfav.	QS sfav.	γ _ε 8	1,5	1,5	1,3	1	1	1	1	0	1	0	0	0
Vento	Fav.	W fav.	N -	0	0	0	0	0	0	0	0	1	0,6	0,2	0
Verito	Sfav.	W sfav.	Yq5	1,5	1,5	1,3	1	1	1	1	0	1	0,6	0,2	0
Vento Ponte Carico	Fav.	Wpc fav.	Y _{q5c}	0	0	0	0	0	0	0	0		0,6	0,2	0
	Sfav. Fav.	Wpc sfav. ET fav.	1400	1,5 0	1,5 0	1,3	1 0	0	0	0	0		0,6	0,2	0
Sisma	Sfav.	ET sfav.	γ _{ET}	1	1	1	1	1	1	1	0	1	0,3		-
	Fav.	Gidr. fav.		0,9	1	1	1	1	1	1	0	- i -	-		
Sottospinta idraulica	Sfav.	Gidr. sfav.	7×	1.1	1,35	1	1	1	1	1	0	1	-	-	-
Sisma mobili	Fav.	ETm fav.	.,	Ó	0	0	0	0	0	0	0	1	-	-	0,
Sisma modili	Sfav.	ETm sfav.	γx	1	1	1	1	1	1	1	0	1	-	-	0,
	Fav.		γx	0	0	0	0	0	0	0	0	1	-	-	-
	Sfav.		**	0	0	0	0	0	0	0	0	1 1	-	-	-
	Fav. Sfav.		γx	0	0	0	0	0	0	0	0	1	-	-	
	Fav.			0	0	0	0	0	0	0	0	1	-	-	-
	Sfav.		γx	0	0	0	0	0	0	0	0	1	-	-	
	Fav.			0	0	0	0	0	0	0	0	1	-	-	-
	Sfav.		γx	0	0	0	0	0	0	0	0	1	-	-	-

Le azioni determinate sui singoli elementi costitutivi della spalla sono state determinate sulla base di quanto riportato nella tabella superiore

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	54 di 68

9.3.1 Elevazione

COMBINAZIONI A1-M1

	Mx max	N min	Vy max	Vy min	N max	Mx min
COMB.	CC 5	CC 6	CC 1	CC 9	CC 3	CC 15
$N_{Ed}[kN] =$	105,8	137,5	79,7	-61,9	-129,1	-99,2
$M_{x,Ed}$ [kNm] =	-908,7	-900,6	-904,8	-778,6	-873,5	-760,2
$M_{y,Ed}$ [kNm] =	-64,8	-64,8	-112,2	-97,2	-145,8	-97,2
$M_{z,Ed}$ [kNm] =	-289,6	-289,6	-289,6	-262,4	-286,4	-262,4
$V_{x,Ed} =$	-18,9	-18,9	-18,9	-27,5	-40,5	-27,5
$V_{v,Ed} =$	584,9	584.9	584,9	533,1	584,9	533,1

COMBINAZIONI SLV-M1						
	Mx max	Vy max	Vy min	N max	N min	Mx min
COMB.	CC 28	CC 27	CC 19	CC 23	CC 22	
N_{Ed} [kN] =	122,6	87,8	66,3	56,0	122,9	0,0
$M_{x,Ed}$ [kNm] =	-354,3	-349,1	-41,4	-257,0	-261,9	0,0
$M_{y,Ed}$ [kNm] =	0,0	-12,0	-52,3	-269,2	-68,6	0,0
$M_{z,Ed}$ [kNm] =	-139,9	-139,4	-405,2	-207,9	-217,0	0,0
$V_{x,Ed} =$	0,0	-3,2	-3,8	-32,5	-6,9	0,0
$V_{v,Ed} =$	279,8	279,8	268,3	276,3	276,3	0,0

COMBINAZIONI RARA

	Mx max	Vy max	Vy min	N max	N min	Mx min
COMB.	CC 31	CC 29	CC 33	CC 30	CC 31	CC 35
$N_{Ed}[kN] =$	100,7	83,3	-23,5	-73,3	100,7	-69,5
$M_{x,Ed}$ [kNm] =	-635,8	-633,2	-547,3	-609,7	-635,8	-540,4
$M_{y,Ed}$ [kNm] =	-43,2	-74,8	-67,2	-103,2	-43,2	-67,2
$M_{z,Ed}$ [kNm] =	-207,1	-207,1	-188,8	-204,7	-207,1	-188,8
$V_{x,Ed} =$	-12,6	-12,6	-19,0	-28,6	-12,6	-19,0
$V_{y,Ed} =$	417,9	417,9	383,4	417,9	417,9	383,4

COMBINAZIONI FREQUENTE

	Mx max	N max	N min	Vy max	Vy min	Mx min
COMB.	CC 37	CC 38	CC 37	CC 37	CC 37	CC 38
$N_{Ed}[kN] =$	90,5	-33,7	90,5	90,5	90,5	-33,7
$M_{x,\text{Ed}}\left[kNm\right] =$	-564,4	-545,7	-564,4	-564,4	-564,4	-545,7
$M_{y, Ed} \left[kNm \right] =$	0,0	-24,0	0,0	0,0	0,0	-24,0
$M_{z,Ed}\left[kNm\right] =$	-191,7	-190,7	-191,7	-191,7	-191,7	-190,7
$V_{x,Ed} =$	0,0	-6,4	0,0	0,0	0,0	-6,4
$V_{y,Ed} =$	383,4	383,4	383,4	383,4	383,4	383,4

COMBINAZIONI QUASI PERMANENTE

_	Mx max	0				
COMB.	CC 42	0	0	0	0	0
N _{Ed} [kN] =	90,5	0,0	0,0	0,0	0,0	0,0
$M_{x,Ed}$ [kNm] =	-354,5	0,0	0,0	0,0	0,0	0,0

	N.	ELABORATI	ГО	REV.	FOGLIO		
ingegneria civile			B.15		1	55 di 68	
	I		L	L			
$M_{y,Ed}$ [kNm] =	0,0	0,0	0,0	0,0	0,0	0,0	
$M_{z,Ed}$ [kNm] =	-139,9	0,0	0,0	0,0	0,0	0,0	
$V_{x,Ed} =$	0,0	0,0	0,0	0,0	0,0	0,0	
$V_{y,Ed} =$	279,8	0,0	0,0	0,0	0,0	0,0	

9.3.2 Fondazione

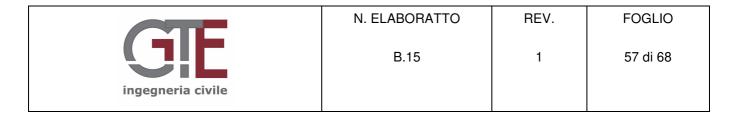
	Mx max	Mx min	My max	My min	M max	M min	Vx max	Vx min	Vy max	Vy min	V max	N max	N min
сомв.	CC 8	CC 26	CC 5	CC 20	CC 1	CC 1	CC 1	CC 5	CC 1	CC 13	CC 5	CC 5	CC 20
N _{Ed} [kN] =	849.5	1083,2	676,7	1313,0	838,9	838,9	838,9	676,7	838.9	743,9	676,7	676,7	1313,0
$M_{k,Ed}$ [kNm] =	-941,6	-557,6	-863,9	-661,0	-936,9	-936,9	-936,9	-863,9	-936,9	-761,7	-863,9	-863,9	-661,0
M _{v.Ed} [kNm] =	-74,3	-111,0	-166,1	-74,3	-121,6	-121,6	-121,6	-166,1	-121,6	-111,0	-166,1	-166,1	-74,3
M _{z.Ed} [kNm] =	8,5	12,4	18,2	8,5	8,5	8,5	8,5	18,2	8,5	12,4	18,2	18,2	8,5
	, ,	-		-	-	-	,	-	· '		-		
V _{x,Ed} =	-18,9	-27,5	-40,5	-18,9	-18,9	-18,9	-18,9	-40,5	-18,9	-27,5	-40,5	-40,5	-18,9
$V_{y,Ed} =$	709,5	651,3	709,5	651,3	709,5	709,5	709,5	709,5	709,5	651,3	709,5	709,5	651,3
OMBINAZIONI SLV-M1													
	Mx max	Mx min	My max	My min	M max	M min	Vx max	Vx min	Vy max	Vy min	V max	N max	N mir
сомв.	CC 54	CC 56	CC 55	CC 54	CC 54	CC 54	CC 46	CC 55	CC 47	CC 55	CC 48	CC 51	CC 5
N _{Ed} [kN] =	897,3	993,5	1004,7	897,3	897,3	897,3	939,5	1004,7	905,4	1004,7	940,2	861,8	1039,
$M_{x,Ed}$ [kNm] =	-349,4	-264,3	-269,3	-349,4	-349,4	-349,4	-316,8	-269,3	-324,4	-269,3	-340,1	-310,5	-294,
$M_{y,Ed}$ [kNm] =	52,8	0,0	-13,6	52,8	52,8	52,8	39,5	-13,6	39,2	-13,6	52,8	25,9	21,3
$M_{z,Ed}$ [kNm] =	-196,6	0,0	1,4	-196,6	-196,6	-196,6	16,2	1,4	-195,2	1,4	-196,6	17,7	-41,6
$V_{x,Ed} =$	49,2	0,0	-3,2	49,2	49,2	49,2	136,8	-3,2	46,0	-3,2	49,2	133,6	42,9
$V_{y,Ed} =$	565,5	384,2	384,2	565,5	565,5	565,5	438,6	384,2	565,5	384,2	565,5	438,6	438,
OMBINAZIONI RARA													
	Mx max	Mx min	My max	My min	M max	M min	Vx max	Vx min	Vy max	Vy min	V max	N max	N mii
сомв.	CC 73	CC 80	CC 71	CC 74	CC 73	CC 73	CC 69	CC 71	CC 69	CC 77	CC 71	CC 71	CC 7
N _{Ed} [kN] =	906,5	736,3	732,5	984,5	906,5	906,5	889,1	732,5	889,1	782,3	732,5	732,5	984,
M _{x.Ed} [kNm] =	-603,3	-438,4	-525,0	-537,0	-603,3	-603,3	-595,4	-525,0	-595,4	-459,1	-525,0	-525,0	-537,
M _{v,Ed} [kNm] =	-49,5	-76,7	-117,5	-49,5	-49,5	-49,5	-81,1	-117,5	-81,1	-76,7	-117,5	-117,5	-49,5
$M_{z,Ed}$ [kNm] =	5,7	8,6	12,9	5,7	5,7	5,7	5,7	12,9	5,7	8,6	12,9	12,9	5,7
V _{x.Ed} =	-12,6	-19,0	-28,6	-12,6	-12,6	-12,6	-12,6	-28,6	-12,6	-19,0	-28,6	-28,6	-12,6
V _{y,Ed} =	508,3	469,5	508,3	508,3	508,3	508,3	508,3	508,3	508,3	469,5	508,3	508,3	508,
OMBINAZIONI FREQUENT													
	Mx max	Mx min	My max	My min	M max	M min	Vx max	Vx min	Vy max	Vy min	V max	N max	N mii
COMB.	CC 83	CC 86	CC 85	CC 84	CC 83	CC 83		CC 85	CC 83	CC 83	CC 85	CC 85	CC 8
N _{Ed} [kN] =	896,3	830,6	772,1	954,8	896,3	896,3	0,0	772,1	896,3	896,3	772,1	772,1	954,8
M _{x,Ed} [kNm] =	-510,4	-404,8	-454,5	-460,7	-510,4	-510,4	0,0	-454,5	-510,4	-510,4	-454,5	-454,5	-460,
M _{y,Ed} [kNm] =	0,0	-27,2	-27,2	0,0	0,0	0,0	0,0	-27,2	0,0	0,0	-27,2	-27,2	0,0
$M_{z,Ed}$ [kNm] =	0,0	2,9	2,9	0,0	0,0	0,0	0,0	2,9	0,0	0,0	2,9	2,9	0,0
$V_{x,Ed} =$	0,0	-6,4	-6,4	0,0	0,0	0,0	0,0	-6,4	0,0	0,0	-6,4	-6,4	0,0
$V_{y,Ed} =$	469,5	469,5	469,5	469,5	469,5	469,5	0,0	469,5	469,5	469,5	469,5	469,5	469,
OMBINAZIONI QUASI PER	MANENTE Mx max												
сомв.	CC 93	0	0	0	0	0	0	0	0	0	0	0	0
N _{Ed} [kN] =	896,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
$M_{x,Ed}$ [kNm] =	-245,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
M _{v.Ed} [kNm] =	0.0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
$M_{z,Ed}$ [kNm] =	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
								1					
V _{x,Ed} =	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
$V_{v,Ed} =$	353,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

9.4 VERIFICA ELEMENTI STRUTTURALI

9.4.1 Pali di fondazione

La determinazione dei carichi sul singolo palo sarà effettuato considerando una redistribuzione rigida delle azioni agenti a spiccato findazione come dedotte nei capitoli precedenti.

Nella figura seguente riportiamo la distribuzione geometrica dei pali di fondazione.


	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	56 di 68

La ripartizione delle azioni fra i vari pali avviene secondo le seguenti formule:

$$\begin{split} Ni &= N_{Ed}/n^opali + M_{x,Ed}/W_{y,i} + M_{y,Ed}/W_{x,i} \\ Vi &= (V_{x,Ed}^2 + V_{y,Ed}^2)^{0.5}/n^opali + M_{z,Ed}/W_{t,i} \end{split}$$

$Jx=\Sigma xi^2$	$W_{x,i}$ = Jx/xi	n°pali= 12	
$Jy=\Sigma yi^2$	$W_{y,i} = Jy/yi$	$x_g = \sum xi/n_{pali}^o = 0.00$	m
$Jo=\Sigma[(y_g-yi)^2+(x_g-xi)^2]^{0.5}$	$W_{t,i}=Jo/[(y_g-yi)^2+(x_g-xi)^2]^{0.5}$	$y_g = \Sigma yi/n^{\circ}_{pali} = 0.00$	m

	1		1		•	T		
PALO	х	у	$A=(x_g-xi)^2$	$B=(y_g-yi)^2$	(A+B) ^{0.5}	Wx,i	Wy,i	Wt,i
N°	[m]	[m]	[m²]	[m²]	[m]	[m]	[m]	[m]
1	1,450	-1,20	2,10	1,44	1,88	9,65	-9,60	8,80
2	0,480	-1,20	0,23	1,44	1,29	29,16	-9,60	12,81
3	-0,480	-1,20	0,23	1,44	1,29	-29,16	-9,60	12,81
4	-1,450	-1,20	2,10	1,44	1,88	-9,65	-9,60	8,80
5	1,450	0,00	2,10	0,00	1,45	9,65	11520,00	11,42
6	0,480	0,00	0,23	0,00	0,48	29,16	0,00	34,50
7	-0,480	0,00	0,23	0,00	0,48	-29,16	0,00	34,50
8	-1,450	0,00	2,10	0,00	1,45	-9,65	0,00	11,42
9	1,450	1,20	2,10	1,44	1,88	9,65	9,60	8,80
10	0,480	1,20	0,23	1,44	1,29	29,16	9,60	12,81
11	-0,480	1,20	0,23	1,44	1,29	-29,16	9,60	12,81
12	-1,450	1,20	2,10	1,44	1,88	-9,65	9,60	8,80
	0,00	0,00	14,00	11,52	16,56			
	Σxi	Σγί	Jx=Σxi ²	$Jy=\Sigma yi^2$	Jo			

Si ottengono i seguenti valori massimi sui pali

STATI LIMITE ULTIMI

A1-M1							
N _{Ed,max}	$N_{\text{Ed,min}}$	$V_{\text{Ed,max}}$					
CC 20	CC 5	CC 5					
185,97	163,57	163,57	kΝ				
32,87	-50,80	-50,80	kΝ				
55,27	61,30	61,30	kΝ				

SLV-M1						
$N_{\text{Ed,max}}$	$N_{\text{Ed,min}}$	$V_{\text{Ed,max}}$				
CC 50	CC 54	CC 54				
131,54	128,31	128,31	kΝ			
59,10	36,19	36,19	kΝ			
45,60	76,62	76,62	kΝ			

STATI LIMITE DI ESERCIZIO

RARA					
N _{Ed,max}	$N_{\text{Ed,min}}$	$V_{\text{Ed,max}}$			
CC 69	CC 71	CC 71			
144,51	127,89	127,89	kΝ		
3,66	-5,82	-5,82	kΝ		
43,02	43,89	43,89	kΝ		

FREQ.						
$N_{\text{Ed},\text{max}}$	$N_{\text{Ed,min}}$	$V_{Ed,max}$				
CC 83	CC 85	CC 86				
127,85	114,50	114,19	kΝ			
21,52	14,18	24,23	kΝ			
39,13	39,46	39,46	kN			

(Q. PERM		
$N_{\text{Ed,max}}$	$N_{\text{Ed,min}}$	$V_{\text{Ed,max}}$	
CC 93	CC 93	CC 93	
100,27	100,27	100,27	kN
49,11	49,11	49,11	kN
29,43	29,43	29,43	kN

falda assente

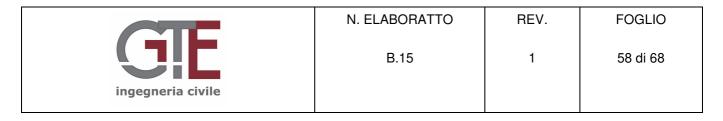
Azione assiale positiva se di compressione

Verifica capacità portante micropali

quota falda $q_f = -18,00$

			STRATIGI	RAFIA						
Descrizione	strato	q _{sup.} strato [m]	quota base strato	H strato	γ _k [t/mc]	γ' _k [t/mc]	ф к [°]	Cu,k [t/mq]	Nspt	f(Nspt)
D	1	0,00	-2,24	2,24	1,90	1,90	17			
E	2	-2,24	-10,00	7,76	1,90	1,90	17			
Е	3	-10,00	-18,00	8	1,90	1,90	17			
E	4	-18,00	-18,00	0	1,90	1,90	17			
E	5	-18,00	-18,00	0	1,90	1,90	17			
E	6	-18,00	inf.	inf.		0,00	17			

(o rispetto p.c.)


CARATTERISTICHE DEL PALO

m.s.m.m.

D =	0,30	m diametro palo	$q_t =$	0,00	m.s.m.m.	(o ris	oetto p.c.	.)	quota testa palo
$L_{palo} =$	18,00	m lunghezza palo	$q_b =$	-18,00	m.s.m.m.	(o ris	oetto p.c.	.)	quota base palo
q' =	0	t/mq carico su p.c.	$\gamma_{\rm palo} =$	2,50	t/mc V	V _{palo} =	3,18	t	

		CAL	COLO DELL	A PORTA	NZA DEL PALO	soc	GETT	O A CA	RICHI	ASSIA	LI	
$\gamma_{\gamma} =$	1	,00	$\gamma_{c'} =$	1,00	γ	cu =	1,00		$\gamma_{\varphi'}$	= 1	,00	
POF	RTATA L	LATERAL	E									

str ato	H strato	γ' [t/mc]	σ _v [t/mq]	As [mq]	φ[°]	μ	k compress	Cu [t/mq]	α	Rs [t] - compr	k trazi one	Rs [t] - traz	
------------	-------------	-----------	-----------------------	---------	------	---	---------------	--------------	---	-------------------	-------------------	------------------	--

1	2,24	1,90	2,13	2,11	17	0,31	0,550	0,00	0,00	0,76	0,50	0,69
2	7,76	1,90	11,63	7,31	17	0,31	0,550	0,00	0,00	14,30	0,50	13,00
3	8,00	1,90	26,60	7,54	17	0,31	0,550	0,00	0,00	33,72	0,5	30,66
4	0,00	0,00	34,20	0,00	17	0,31	0,550	0,00	0,00	0,00		0,00
5	0,00	0,00	34,20	0,00	17	0,31	0,550	0,00	0,00	0,00		0,00
				0				F	R _{s;tot} =	48,78		44,35

PORTATA DI PUNTA

tipo terreno	γ	Ap	σ v,b	terro incoei		terreno	coerente	
incoerente	[t/mc]	[t/mc] [mq]	[t/mq]	φ [°]	qlim	α	Cu [t/mq]	R _b [t]
	0,00	0,07	34,20	17,00	0,00	9,00	0,00	0,00

modifica paramenti alla punta $\Delta \phi$ [°] = 0 ΔCu [t/mq] = CAPACITA' PORTANTE DEL PALO SINGOLO

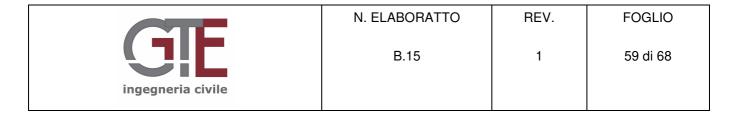
n° verticali indagate 2

fattore di correlazione $\zeta_3 = 1,65$ $\zeta_4 = 1,55$

	Pa	ali trivellati				
	R1 R2 R3					
$\gamma_{ m R;base} =$	1,00 1,70 1,35					
$\gamma_{R; \mathrm{lat; c}} =$	1,00 1,45 1,15					
$\gamma_{R;lat;t} =$	1,00	1,60	1,25			
$\mathbf{R}_{\text{c,d}}$ = $(R_{s,\text{tot}}/\gamma_{R;\text{lat;c}} + R_b/\gamma_{R;\text{base}})/\zeta_4$ =	29,56 20,39 25,71					
$\mathbf{R_{t,d}} = R_{s,tot}/\gamma_{R;lat;t}/\zeta_4 + W_{palo} =$	30,06	19,98	24,68			

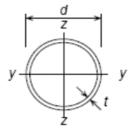
VERIFICA CAPACITA' PORTANTE DELLA PALIFICATA

	PALO	COMB.	Tipo	N_{Ed}	R_d	Fs
	n°			[t]	[t]	
-185,97	1		SLU	-21,78	25,71	1,18
-131,54	1		SLV	-16,34	25,71	1,5738


tipo di	coeff. rid.
verifica	gruppo
R3	1,00
R3	1.00

Verifica tubolare acciaio

Azioni sul Palo


Tipo	Comb.	N _{Ed} kN	M _{Ed} kNm	V _{Ed} kN
SLU-A1M1	CC 20	185,97	66,40	55,27
SLU-A1M1	CC 5	-50,80	73,65	61,30
SLV-M1	CC 50	131,54	54,79	45,60
SLV-M1	CC 54	36,19	92,05	76,62
RARA	CC 69	144,51	51,69	43,02
RARA	CC 71	-5,82	52,74	43,89
FREQ	CC 86	114,19	47,41	39,46
QPERM	CC 93	100,27	35,36	29,43

Verifica tubolare acciaio

CARATTERISTICHE DEL PROFILO CAVO CIRCOLARE

d (mm)	177,8	I (mm ⁴)	21590552
t (mm)	12	W (mm ³)	242863
		W _{pl} (mm³)	330452
g (Kg/m)	49,1	i (mm)	59
A (mm ²)	6251	IT (mm ⁴)	43181105
		I _w (mm ⁶)	0

PROPRIETA' DEL MATERIALE COEFFICIENTI DI SICUREZZA

E	210000	[MPa]	ү мо	1,05
v	0,3		Y M1	1,05
G = E/[2(1+v)]	80769	[MPa]		

Fe 510 355 [MPa] 510 [MPa] f_{tk} 0,81 3

CLASSIFICAZIONE DEL PROFILO (Tabella 5.2 -EC3)

d / t = 14,8 < 33,1 **sezione di classe 1**

SOLLECITAZIONI

N _{Ed} =	186,00	kN	azione assiale sollecitante
$M_{y,Ed,sx} =$	92,50	kNm	momemto flettente attorno all'asse y-y
$M_{y,Ed,dx} =$	0,00	kNm	
$M_{z,Ed,sx} =$	0,00	kNm	momemto flettente attorno all'asse z-z
$M_{z,Ed,dx} =$	0,00	kNm	
$V_{y,Ed} =$		kN	taglio in direzione y
$V_{y,Ed} = V_{z,Ed} =$	76,62	kN	taglio in direzione z
$T_{t Ed} =$	0.00	kNm	torsione uniforme

RESISTENZA PLASTICA DELLA SEZIONE LORDA COMPRESSA/TESA (per sezioni di classe 1, 2 o 3)

	N. ELABORATTO	REV.	FOGLIO
CIL	B.15	1	60 di 68
ingegneria civile			

 $N_{pl,Rd} =$ 2113 kN $N_{Ed} / N_{pl,Rd}$ 0,088 < 1

RESISTENZA DELLA SEZIONE A FLESSIONE (per sezioni di classe 1, 2 o 3)

M_{Rk} = 117,3 kNm momento resistente caratteristico della sezione

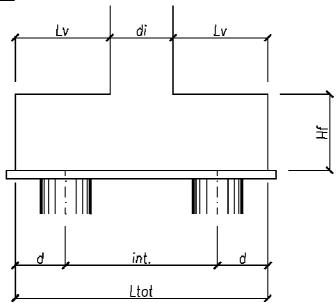
W = 330452 mm⁴ modulo resistente della sezione (dipende dalla classe della sezione)

 M_{Rd} = 111,7 KNm M_{Rk}/γ_{M0} momento resistente di progetto

 $M_{y,Ed} / M_{Rd}$ 0,828 < 1

RESISTENZA DELLA SEZIONE PRESSO/TENSO-INFLESSA (per sezione di classe 1 o 2)

n = 0,088 $a_w = 0,317$


 $M_{N,Rd}$ = 111,7 kNm momento resistente di progetto ridotto per l'effetto dello sforzo normale

 $M_{y,Ed} / M_{Rd}$ 0,828 < 1

9.4.2 Fondazione

VERIFICA DEL PLINTO DI FONDAZIONE

Caratteristiche geometriche

fusto della pila

Dx = dt = 3,10 m dimensione trasversale del fusto Dy = dl = 0,80 m dimensione longitudinale del fusto

plinto di fondazione

 $L_{v,x} = 0,20$ m sbalzo direzione x $L_{v,y} = 0,70$ m sbalzo direzione y

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	61 di 68

	$L_{tot,x} =$	3,50	m	dimensione trasversale plinto
	$L_{tot,y} =$	2,20	m	dimensione longitudinale plinto
	Hf =	0,50	m	altezza plinto
	dx =	0,30	m	distanza dal bordo del palo lungo x
	dy =	0,30	m	distanza dal bordo del palo lungo y
	int,x =	0,97	m	interasse pali lungo x
	int,y =	1,20	m	interasse pali lungo y
	$A_{plinto} =$	7,7	m²	area impronta plinto
	$V_{plinto} =$	3,9	m ³	volume plinto
	$W_{plinto} =$	96,25	kN	peso plinto
	$\phi_{palo} =$	0,30	m	diametro del palo
rinterro				
	$h_{rinterro,valle} =$	0,50	m	altezza media rinterro, lato valle
	γterrreno =	19,00	kN/m³	peso per unità di volume terreno

Resistenze a compressione dei nodi

La pressione di progetto per i nodi compressi senza tiranti è pari a:

$$\sigma_{1Rd,max} = k_1 v' f_{cd} = 17,12$$
 N/mm²

La pressione di progetto per i *nodi compressi-tesi* con tiranti ancorati disposti in una sola direzione:

$$\sigma_{2Rd,max} = k_2 v' f_{cd} = 14,55$$
 N/mm²

La pressione massima per *nodi compressi-tesi* con tiranti ancorati disposti in più di una direzione è pari a:

$$\sigma_{3Rd,max} = k_3 v' f_{cd} = 12,84$$
 N/mm²

dove:

σ_{iRd,max} = massima tensione che può essere applicata ai bordi del nodo

$$k_1 = 1.0$$
 $k_2 = 0.85$ $k_3 = 0.75$ $k_3 = 1.04$

VERIFICHE IN DIREZIONE LONGITUDINALE

Sollecitazioni di progetto

Per le verifiche a punzonamento e dell'armatura resistente si devono considerare come azioni esterne le azioni nette trasmesse dai pali, ottenute detraendo dalle azioni massime agenti su essi i contributi che derivano dal peso proprio del plinto e del terreno sovrastante.

W _{plinto} =	12,5	kN/m^2	γ _{G1} =	1,00	peso proprio del plinto, lato valle
W _{rin,valle} =	9,5	kN/m^2	γ _{G2} =	1,00	peso del terreno sovrastante, lato valle

I carichi su esposti saranno detratti all'azione massima agente in proporzione all'area di influenza afferente al palo.

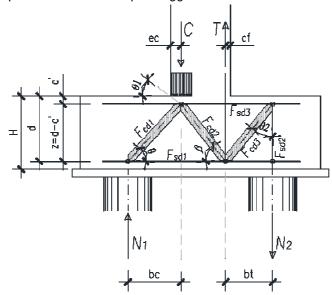
Questa sarà determinata ipotizzando una dimensione longitudinale pari allo sbalzo di valle e trasversalmente pari alla larghezza di competenza del puntone compresso.

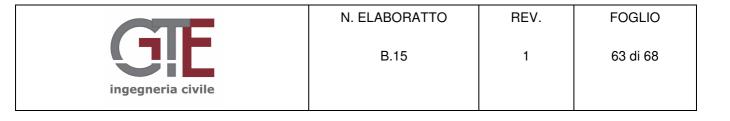
La larghezza trasversale dei puntoni viene determinata mediante una ripartizione a 45° delle tensioni dalla sommità del palo fino allo spiccato della mensola, nel limite delle dimensioni dello stesso e dell'interasse rispetto agli altri pali. Si ha quindi:

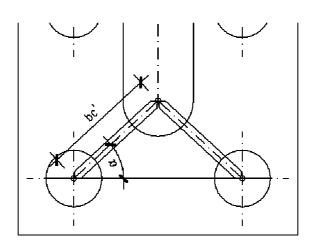
	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	62 di 68

 $\begin{array}{lll} b_{puntoni} = & 0.79 & m \\ A_{infl,palo} = & 0.55 & m^2 \\ W_{plinto+rinterro} = & \gamma_{G1}W_{plinto} + \gamma_{G2}w_{rin,valle} = & 12.09 & kN & peso totale da detrarre \end{array}$

Le azioni nette trasmesse dal palo al plinto di fondazione sono così calcolate:


$$N_{Ed} = N_{palo} - W_{plinto+rinterro}$$


AZIONE SU	JL PALO	N _{palo}	N _{Ed}
İ		[kN]	[kN]
SLU-A1M1	CC 20	0,00	-12,09
SLU-A1M1	CC 5		-12,09
SLV-M1	CC 50	185,97	173,88
SLV-M1	CC 54	131,54	119,45
RARA	CC 69	370,97	358,88
RARA	CC 71	-89,26	-101,35
FREQ	CC 86	345,92	333,83
QPERM	CC 93	252,74	240,65

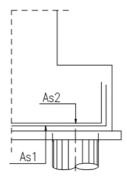

Verifiche strutturali

La geometria tozza del plinto di fondazione fa propendere per un meccanismo resitente di tipo puntone-tirante. La geometria del traliccio resitente risulta legata alla presenza o meno di pali in trazione, la figura seguente individua il meccanismo adottato.

Nel caso specifico vi sono dei pali soggetti a trazione

PALO SOGGETTO A MASSIMA COMPRESSIONE

geometria meccanismo


A favore di sicurezza si considera inoltre che il puntone risulta inclinato rispetto al piano del traliccio e che ha quindi una lunghezza effettiva maggiore, con conseguente incremento delle azioni negli elementi del traliccio.

H =	0,50	m					$\alpha =$	45,00°	
d =	0,44	m					bc =	0,60	m
z =	0,37	m					b'c =	0,85	m
ec =	0,2	m		distanza d	ella ris	ultante	C da	bordo del	fusto
$b_{\text{puntoni}} =$	0,79	m		larghezza	punton	ie			
$\theta =$			$arctg(z/b'_c) =$	0,415	rad	=		23,79°	
$\theta 1 =$		arctg(2	$(d-z) / (2 e_c) =$	0,319	rad	=		18,26°	
h _{c1} =	2e _c / cos	θ1 * cos	(90 - θ - θ1) =			0,28		m	altezza puntone $F_{\text{cd},1}$
$h_{c2} =$	0,34	m							altezza puntone $F_{cd,2}$

Nello schema adottato per la verifica i puntoni rappresentano le risultanti dei campi tensionali di compressione, i tiranti sono le risultanti degli sforzi di trazione nelle barre di armatura, ed i nodi coincidono con le zone di calcestruzzo dove i puntoni compressi sono deviati dalle barre di armatura o da altri puntoni.

Si verificano il puntone compresso e l'armatura resistente del plinto di fondazione al di sopra del palo maggiormente sollecitato.

armatura disposta (nella larghezza del puntone)

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	64 di 68

	n.	ø(mm)	A _s (mm ²)	c (mm)	p (mm)
ordine inferiore (As1)	7,85	22	2984	60	100
ordine superiore (As2)	1	0	0	93	0
		As.tot =	2984		

Verifiche Stati Limite Ultimi

Si conduce la verifica per il nodo superiore (in corrispondenza del paramento verticale) che risulta compresso senza tiranti, del nodo in corrispondenza del palo che risulta compresso-teso e del tirante teso per la situazione di carico più gravosa.

Azioni di progetto

	$N_{Ed,SLU} =$	173,88	kN	SLV-M1	CC 50
$F_{cd,1} =$	$N_{\text{Ed,SLU}}/\text{sen}\theta =$	431,11	kN	nodo compresso-	teso
$F_{cd,2} =$	$N_{Ed,SLU}/tg\theta =$	394,49	kN	nodo compresso	
$F_{sd,1} =$	$N_{Ed,SLU}/tg\theta =$	394,49	kN	tirante teso	

Resistenze di progetto

$F_{cd,1,Rd} =$	$\sigma_{2Rd,max}$ *(b _{puntone} * h _{c1}) =	3222,01	kN	>	$F_{cd,1}$
$F_{cd,2,Rd} =$	$\sigma_{1Rd,max} *(b_{puntone} * h_{c2}) =$	4518,11	kN	>	$F_{\text{cd,2}}$
$F_{sd,1,Rd} =$	$f_{yd} A_s =$	1167,67	kN	>	$F_{\text{sd},1}$

Si nota che in tutte le combinazioni le sollecitazioni di verifica sono inferiori alle resistenze di progetto.

Verifiche Stati Limite di Esercizio

Come concesso dalla circolare esplicativa n°617 del 02/02/2009 al p.to C4.1.2.2.4.6, la verifca a fessurazione viene condotta limitando il livello tensionale nell'armatura tesa, si limita inoltre la massima tensione di compressione agente nei puntoni compressi.

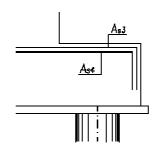
	RARA	FREQ	QPERM		
	CC 69	CC 86	CC 93		
$N_{\text{Ed,SLE}} =$	358,88	333,83	240,65	kN	
$F_{cd,1} = N_{Ed,SLE}/sen\theta =$	889,81	827,70	596,67	kN	nodo compresso-teso
$F_{cd,2} = N_{Ed,SLE}/tg\theta =$	814,23	757,39	545,99	kN	nodo compresso
$F_{td} = N_{Ed,SLE}/tg\theta =$	814,23	757,39	545,99	kN	tirante teso
σ _c =	4,02	3,74	2,69	N/mm²	
σ _{c,max} =	14,94	-	11,21	N/mm²	
σ _s =	272,86	253,81	182,97	N/mm²	
σ _{s,max} =	360	-	-	N/mm²	
σ _{s,fess} =	-	280	200	N/mm²	

PALO SOGGETTO A MASSIMA TRAZIONE

geometria meccanismo

À favore di sicurezza si considera inoltre che il puntone risulta inclinato rispetto al piano del traliccio e che ha quindi una lunghezza effettiva maggiore, con conseguente incremento delle azioni negli elementi del traliccio.

H =	0,50	m	$\alpha = -4$	15,00°	
c' =	0,06	m	$b_t =$	0,46 n	n
z =	0,37	m	$b'_t =$	0,65 n	n


	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	65 di 68

copriferro armature fusto

Nello schema adottato per la verifica i puntoni rappresentano le risultanti dei campi tensionali di compressione, i tiranti sono le risultanti degli sforzi di trazione nelle barre di armatura, ed i nodi coincidono con le zone di calcestruzzo dove i puntoni compressi sono deviati dalle barre di armatura o da altri puntoni.

Si verificano il puntone compresso e l'armatura resistente del plinto di fondazione al di sopra del palo maggiormente sollecitato.

armatura disposta (nella larghezza del puntone)

orizz. Sup. I ordine (As3) orizz. Sup. II ordine (As4)

	n.	ø(mm)	A _s (mm ²)	c' (mm)	p (mm)			
	7,85	22	2984	60	100			
	1	0	0	93	0			
A _{s tot} = 2984								

verticale (Asv - Fsd,2)

	n.	ø(mm)	A _s (mm ²)
)	0	0	0
	0	0	0
		A _{s,tot} =	0

Verifiche Stati Limite Ultimi

Si conduce la verifica per il nodo superiore (in corrispondenza del paramento verticale) che risulta compresso senza tiranti, del nodo in corrispondenza del palo che risulta compresso-teso e del tirante teso per la situazione di carico più gravosa.

Azioni di progetto

	$N_{Ed,SLU} =$	-12,09	kN	SLU-A1M1 CC 20
$F_{cd,3} =$	$N_{\text{Ed,SLU}}/\cos\theta 2 =$	-13,94	kN	nodo compresso-teso
$F_{sd,2} =$	$N_{Ed,SLU} =$	-12,09	kN	tirante verticale teso
$F_{sd,3} =$	$N_{Ed,SLU}*tg\theta2 =$	-6,95	kN	tirante orizzontale teso

Resistenze di progetto

$F_{cd,3,Rd} =$	$\sigma_{3Rd,max} * (b_{puntone} * h_{c3}) =$	2054,43	kN	>	$F_{\text{cd},1}$
$F_{sd,2,Rd} =$	$f_{yd} A_s =$	0,00	kN	>	$F_{\text{sd},2}$
$F_{sd,3,Rd} =$	$f_{yd} A_s =$	1167.67	kN	>	$F_{\text{sd},3}$

	N. ELABORATTO	REV.	FOGLIO
ingegneria civile	B.15	1	66 di 68

Si nota che in tutte le combinazioni le sollecitazioni di verifica sono inferiori alle resistenze di progetto.

Verifiche Stati Limite di Esercizio

Come concesso dalla circolare esplicativa n°617 del 02/02/2009 al p.to C4.1.2.2.4.6, la verifca a fessurazione viene condotta limitando il livello tensionale nell'armatura tesa, si limita inoltre la massima tensione di compressione agente nei puntoni compressi.

		RARA	FREQ	QPERM		
		CC 71	CC 86	CC 93		
	$N_{\text{Ed,SLE}} =$	-101,35	333,83	240,65	kN	
F _{cd,3} =	$N_{\text{Ed,SLE}}/\cos\theta 2 =$	-116,90	385,07	277,59	kN	nodo compresso-teso
F _{sd,2} =	$N_{\text{Ed,SLE}} =$	-101,35	333,83	240,65	kN	tirante verticale teso
$F_{sd,3} =$	$N_{\text{Ed,SLE}}^{*}tg\theta 2 =$	-58,27	191,92	138,35	kN	tirante orizzontale teso
σ _c =		-0,22	2,41	1,73	N/mm²	
σ _{c,max} =		14,94	-	11,21	N/mm²	
σ _s =		-33,96	111,87	80,65	N/mm²	
σ _{s,max} =		360	-	-	N/mm²	
σ _{s,fess} =		-	160	160	N/mm²	

9.4.1 Elevazione

Caratteristiche meccaniche dei materiali

Calcestruzzo	C28/35	R _{ck} =	35	N/mm²	$f_{ck} =$	28	N/mm²
γ _c =	1,5	$\alpha_{cc} =$	0,85		$f_{\text{cd}} =$	15,87	N/mm²
		Ec =	32308	N/mm²	$f_{ctm} =$	2,77	N/mm²
Acciaio	B450C	Es =	200000	N/mm²	$f_{yk} =$	450	N/mm²
$\gamma_{s} =$	1,15	ε' _{se}	1,96		$f_{yd} =$	391,3	N/mm²

Caratteristiche geometriche della sezione

B =	1000	mm base	n.	ø(mm)	A _s (mm ²)	y (mm)
H =	800	mm altezza	5	20	1571	50
C =	50	mm coprifer.			-	
N _{Ed} positivo di	compressione	5	20	1571	750	
M _{Ed} positivo se	e tende le fibre infe			-		
y distanza dell'	armatura dal lemb	o superiore		Σ	3142	mm²

Verifiche agli Stati Limite Ultimi

Flessione

Combinazione	posizione	N_{Ed}	M _{Ed}	V_{Ed}	M_{Rd}	<u>M_{Rd}</u>
	posizione	[kN]	[kNm]	[kN]	[kNm]	M _{Ed}
CC 3 - COMB. A1-M1	spiccato	-41,65	281,76	188,69	420,53	1,49
CC 6 - COMB. A1-M1	spiccato	44,35	290,51	188,69	451,28	1,55
CC 5 - COMB. A1-M1	spiccato	34,13	293,13	188,69	447,63	1,53
CC 1 - COMB. A1-M1	spiccato	25,71	291,86	188,69	444,62	1,52
CC 23 - COMB. SLV-M1	spiccato	18,06	82,90	89,14	441,89	5,33

			N. EL	ABORATTO	RE	V.	FOGLIO
ingegneria civile		B.15		1		67 di 68	
CC 22 - COM	B. SLV-M1	spiccato	39,64	84,50	89,14	449,60	5,32
CC 28 - COM	B. SLV-M1	spiccato	39,54	114,28	90,25	449,57	3,93
CC 19 - COM	19 - COMB. SLV-M1 spiccato		21,40	13,37	86,55	36,55 443,08	
Taglio							
$\phi_{staffe} =$	0	mm	α =	90	° inclinazione staffa		
$n_b =$	0	n° braccia	θ =	1,00	° inclinazion	e puntone (compresso
S =	0	mm passo		1		T	1
Con	nbinazione	posizione	$V_{\text{Rd},0}$	$V_{Rd,s}$	$V_{Rd,c}$	V_{Rd}	V_{Rd}
		P 30.2.0110	[kN]	[kN]	[kN]	[kN]	V _{Ed}
CC 3 - COMI		spiccato	253,52	0,00	0,00	253,52	1,34
CC 6 - COMI		spiccato	265,61	0,00	0,00	265,61	1,41
CC 5 - COMI	B. A1-M1	spiccato	264,17	0,00	0,00	264,17	1,40
CC 1 - COMI	B. A1-M1	spiccato	262,99	0,00	0,00	262,99	1,39
CC 23 - COM	B. SLV-M1	spiccato	261,92	0,00	0,00	261,92	2,94
CC 22 - COM	B. SLV-M1	spiccato	264,95	0,00	0,00	264,95	2,97
CC 28 - COM	B. SLV-M1	spiccato	264,94	0,00	0,00	264,94	2,94
CC 19 - COM	B. SLV-M1	spiccato	262,38	0,00	0,00	262,38	3,03
Vorificho agli	Stati Limite Esercizio	. Toncioni in	ocorcizio				
Comb. caratte		σ _c =	16,8	N/mm²	σ _s =	360,0	N/mm²
				N _{Ed}	M _{Ed}	M _{Rd}	M _{Rd}
'	Combinazi	one	posizione	[kN]	[kNm]	[kNm]	MEd
Ī	CC 30		spiccato	-23,65	196,69	384,37	1,95
	CC 31		spiccato	32,48	205,11	402,68	1,96
	CC 31		spiccato	32,48	205,11	402,68	1,96
	CC 33		spiccato	-7,58	176,54	389,61	2,21
Comb. Quasi	norm	G . –	12,6	N/mm²	G . –	360,0	N/mm²
Julio. Quasi		σ _c =	12,0	NEd	σ _s =	M _{Rd}	M _{Rd}
ļ	Combinazi	one	posizione	[kN]	[kNm]	[kNm]	M _{Ed}
	CC 42		spiccato	29,19	114,37	401,60	3,51
Varifiaha agli	Stati Limita Faaraisis	Faccuration	20				
vermone ayıl v	<u>Stati Limite Esercizio</u> Condizion		<u>110</u>				
		aggressive		armatura	poco sensib	oile	
	6,19	$\phi_{eq} =$	20,00				
$\alpha_e =$		1.	0,5	k ₃ =	3,4	k4 =	0,425
$\alpha_e = k_1 =$	8,0	k ₂ =	0,5	N3 =	,		
	·	$K_2 = $ $k_t = $	0,6	W _{lim} =	0,3	mm	
k ₁ = Comb. Freque	ente	k _t =				mm x	As
k ₁ = Comb. Freque	·		0,6	W _{lim} =	0,3		A _s [mm²]
k ₁ = <i>Comb. Freque</i> Con	ente	k _t =	0,6 N _{Ed}	W _{lim} =	0,3 σ _s	х	
k ₁ = Comb. Freque Con CC 38	ente	k _t =	0,6 N _{Ed} [kN]	W _{lim} = M _{Ed} [kNm]	0,3 σ _s [MPa]	x [mm]	[mm²]
k ₁ = Comb. Freque	ente	k _t = posizione spiccato	0,6 N _{Ed} [kN] -10,87	W _{lim} = M _{Ed} [kNm] 176,05	0,3 σ _s [MPa]	x [mm] 0	[mm²] 1571
k ₁ = <u>Comb. Freque</u> Con CC 38 CC 37	ente	k _t = posizione spiccato spiccato	0,6 N _{Ed} [kN] -10,87 29,19	W _{lim} = M _{Ed} [kNm] 176,05 182,06	0,3 σ _s [MPa] 0 157	x [mm] 0 161	[mm²] 1571 1571

	N. ELABORATTO	REV.	FOGLIO
CIL	B.15	1	68 di 68
ingegneria civile			

	[mm²]			[mm]	[mm]	
CC 38	266667	0,01	0,00%	713,20	0,00	0,00
CC 37	213087	0,01	0,05%	597,23	0,28	OK
CC 37	213087	0,01	0,05%	597,23	0,28	OK
CC 38	266667	0,01	0,00%	713,20	0,00	0,00

Comb. Quasi perm.	k _t =	0,4	Wlim =	0,2	mm	
Combinazione	posizione	N_{Ed}	M_{Ed}	$\sigma_{\rm s}$	х	As
		[kN]	[kNm]	[MPa]	[mm]	[mm²]
CC 42	spiccato	29,19	114,37	95	166	1571

Combinazione	$A_{c,eff}$	$ ho_{ m eff}$	$\epsilon_{ m sm}$	$\Delta_{\sf smax}$	W _d	Verifica
	[mm²]			[mm]	[mm]	
CC 42	211442	0,01	0,03%	593,67	0,17	ОК